
.

APRm FOR PUBLI RELE4SE
DISMIUTN UNUMITW

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

AD-A208 070
CRITICAL PROBLEMS IN VERY LARGE SCALE COMPUTER SYSTEMS

Semiannual Technical Report for the period October 1, 1988 to March 31, 1989

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 D T IC

S EL ECTE
MAY 23 1989D

Principal Investigators: Paul Penfield, Jr. (617) 253-2506
Anant Agarwal (617) 253-1448
William J. Dally (617) 253-6043
Srinivas Devadas (617) 253-0454
Thomas F. Knight, Jr. (617) 253-7807
F. Thomson Leighton (617) 253-3662
Charles E. Leiserson (617) 253-5833
Jacob K. White (617) 253-2543
John L. Wyatt, Jr. (617) 253-6718

This research was sponsored by Defense Advanced Research Projects Agency (DoD), through the Office of
Naval Research under Contract No. N00014-87-K-0825.

Microsysters Massachusetts Cambridoe Teleohone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

TABLE OF CONTENTS

R esearch O verview .. I

C ircuits .. 2
Processing E lem ents ... 4
Communications Topology and Routing Algorithms .. 6
System s Softw are ... 8
A lgorithm s .. 10
A pplica tions ... 12
Publications List .. 17

Selected Publications (starting page 17)

C. E. Leiserson, "VLSI Theory and Parallel Supercomputing," Decennial Caltech VLSI Conference, ed. C. Seitz,
MIT Press, March 1989.

W. J. Dally, "Mechanisms for Concurrent Computing," Proceedings of the International Conference on Fifth
Generation Computer Systems, edited by ICOT, vol. 1, pp. 154-156, 1988.

W. Horwat, A. A. Chien, and W. J. Dally, "Experience with CST: Programming and Implementation,"
Proceedings of the ACM SIGPLAN '89 Conference on Programming Language Design and Implementation, 1989.

D. L. Standley and J. L. Wyatt, Jr., "Circuit Design Criteria for Stability in a Class of Lateral Inhibition Neural
Networks," Proceedings, IEEE Conference on Decision and Control, Austin, Texas, December 7-9, 1988. Also
MIT VLSI Memo No. 88-477, October 1988.

S. Devadas, "General Decomposition of Sequential Machines: Relationships to State Assignment," to appear in
Proceedings, 26th Design Automation Conference, Las Vegas, Nevada, June 1989. Also to appear as MIT VLSI
Memo No. 89-510, March 1989.

* K. Kundert, J. White, and A. Sangiovanni-Vincentelli, "A Mixed Frequency-Time Approach for Distortion
Analysis of Switched Capacitor Filters." IEEE Journal of Solid State Circuits, April 1989. Also MIT VLSI
Memo No. 88-480, October 1988.

* S. Owicki and A. Agarwal, "Evaluating the Performance of Software Cache Coherence," to appear in ACM,
Proceedings, Architectural Support for Programming Languages and Operating Systems-Ill, April 1989. Also MIT
VLSI Memo No. 88-478, October 1988.

* W. J. Dally, "The i-Machine: System Support for Actors," Concurrent Object Programming for Knowledge
Processing. An Actor Perspective, C. Hewitt and G. Agha editors, MIT Press, 1989. Also MIT VLSI Memo No.
88-491, December 1988.

* T. Leighton, B. Maggs, and S. Rao, "Universal Packet Routing Algorithms," Proceedings of the IEEE 29th
Annual Symposium on Foundations of Computer Science, October 1988, pp. 256- 271. ALso MIT VLSI Memo
No. 88-492, December 1988.

* J. L. Wyatt, Jr. and D. L. Standley, "Criteria for Robust Stability in a Class of Lateral Inhibition Networks
Coupled Through Resistive Grids," to appear in Neural Computation, Vol. 1, No. 1, Spring 1989. Also MIT
VLSI Memo No. 88-493, November 1988.

* D. L. Standley and J. L. Wyatt, Jr., "Stability Criterion for Lateral Inhibition and Related Networks that is
Robust in the Presence of Integrated Circuit Parasitics," to appear in IEEE Transactions on Circuits and
Systems, Special Issue on Neural Networks, 1989. Also MIT VLSI Memo No. 88-494, November 1988.

ii I
S. Devadas, H.-K. T. Ma, and A. R. Newton, "Easily Testable PLA-based Finite State Machines," to appear

in FTCS-19, June 1989. Also to appear as MIT VLSI Memo No. 89-514, March 1989.

* A. Agarwal and A. Gupta, "Temporal, Processor, and Spatial Locality in Multiprocessor Memory
References," MIT VLSI Memo No. 89-512, March 1989. 1
* S. Devadas, "Approaches to Multi-Level Sequential Logic Synthesis," to appear in Proceedings of 26th Design

Automation Conference, Las Vegas, Nevada, June 1989. 3
* Ronald I. Greenberg, "Area-Universal Networks," extended abstract.

* A. T. Ishii, "A Digital Model for Level-Clocked Circuitry, M. S. Thesis, Department of Electrical Engineering
and Computer Science, MIT, August 1988.

* J. A. S. Fiske, "A Reconfigurable Arithmetic Processor," M. S. Thesis, Department of Electrical Engineering
and Computer Science, MIT, December 16, 1988.

* Abstract only. Complete version available from Microsystems Research Center, Room 39-321, MIT,

Cambridge, MA 02139; telephone (617) 253-8138.

U
U
I
I
I
I
I
I
U
I
a
I

RESEARCH OVERVIEW

The research vehicle for this contract is the largest possible computer that could be conceived for the
mid to late 1990s. The technical challenges of such a machine serve as the guiding stimulu.v for the research
carried out and reported here.

'---- We imagine l ichine to occupy a 14-story building, to cost Lpwards of $1,(X0,000,000, and .- be so
colossal that the nation could only afford one or two of them. The available chip technology and machine size
are consistent with a million billion FLOPS (that's 10 to the 15th) and a million billion Bytes of memory. It will
dissipate 50 megawatts of power using CMOS technology. Communication across the machine will be much

slower than computation at a node. The architecture, software, intercornect technology, packaging, and
operating system are unknown.

(This investigation deals with hardware technology, software techniques, programming algorithms,
communications, processing elements, and applications. The study will determine the plausibility (not
feasibility) of such a machine. Progress in these various areas are highlighted in the individual sections below.

-41

Un/sovced 0]
Just I _ ct I._

Distribut io /

AvtPIl!'A1ty Codes

Avail and/or

Dist Special

I
21

CIRCUITS I
Our work over the past six months has been driven by two central themes: (1) the realization that with

proper architectural support, we need not arbitrarily choose a single programming model to support on a
parallel processor, and (2) an investigation of the deep relationship between constructing reliable, distributed,
parallel memory systems and more conventional software database technology. I

The support of multiple programming models (shared memory, dataflow, functional, message passing,
systolic, data level parallelism etc.) on a single architecture appears now to be not only possible, but inevitable.
With modest adjustments to processor, cache controllers, and interconnection technology, the requirement that I
each new parallel programming model demands a new system level design appears to be gone. In the
processor, the main requirements are fast context switch and fast message dispatch and composition. In the
cache controller, the requirement is for support of one of the newer message oriented cache coherency
protocols. In the switch, the requirement is for extremely low latency, reliable communications.

Our approach has been to attack the interconnection issues first, on the assumption that they were least
likely to be addressed carefully by others, and that they were (or could be made) simpler and easier to get right U
than the more complex designs for cache and processor. The Transit communication network is the outgrowth

of this work.

Transit* is a small scale prototype network designed with fault tolerance and low latency as key design I
goals. Henry Minsky and Andre DeJon are working with me in the development of a custom VLSI component
for this switch. The goal is to provide a 100 megabyte/second channel with 40 ns. latency between pairs of up to
256 processor ports in a reliable, fault tolerant design.

Packaging is key, and we are developing a liquid cooled three-dimensional package, based on the button
board concept, .which provides approximately equal wiring density in all three axes. The goal is to package an
entire large scale multiprocessor into a solid cubical block of printed circuit board material approximately 18"
on a side.

Innovative techniques are being used to transmit data between chipst modified by replacing the I
voltage controlled output switches by a binary weighted D/A resistive network.

The switch design is extremely simple, and involves no buffering, queuing, or combining, opting instead 3
to concentrate on maximum speed of transmission. Fault tolerance is achieved with a combination of random
route choice between equivalent paths and ethernet-style positive acknowledgement plus retry.

High expected success routing rates are achieved by the use of a 2x dilated omega network topology,
which as Leighton and Koch show, has dramatically improved statistics over the conventional omega network.

Despite our detailed attention to the routing network design, preliminary thought is also being given to I
other portions of the design.

In the processor area, we are looking at techniques for speeding process switching, including the VLSI
design of large multi-ported register files with built in backup copies, allowing single cycle register file switching.

* T. Knight, "Technologies for Low Latency Interconnection Networks," Symposium on Parallel Algorithms I
and Architectures, June, 1989

t T. Knight, "A Self-Terminating Low Voltage Swing CMOS Driver," Journal of Solid State Circuits, April,
1988.

l

I3

In the cache area, we are investigating a variety of message based protocols cooperatively with Anant
Agarwal's group. In addition, Neil Lackritz is working with me in attempting to understand the impact that a
knowledge of hardware datatypes and their properties have on cache performance. Our hope is that we may
gain cache performance over more conventional designs by relying on a combination of compiler directives and
run time types of data to control the cache refill algorithms.

More fundamentally, we are beginning in earnest to examine the relationship between conventional
software oriented database technology and the problem of maintaining consistent, replicated, distributed copies
of main memory.

Alan Bawden, for example, is continuing his work on the utility and importance of side effects. His most
important results to date include the first mathematical description of what a side effect is; he is now
implementing a model of computation in which the costs (and benefits) of side effects are explicitly visible to
the programmer.

Patrick Sobalvarro is extending our earlier work on dynamically checked side effects' by collecting
traces of programs and implementing the coherency/concurrency techniques.

Bryan Butler, in collaboration with Draper Labs, is designing a novel fault tolerant main memory
structure based on coding techniques, which is suitable for use in four way Byzantine fault tolerant
architectures, uses half of the memory of alternative approaches, and dramatically (3 orders of magnitude)
improves the predicted mean time to failure of the memory system.

*T. Knight, "An Architecture for Mostly Functional Languages," ACM Lisp and Functinal Programming
Conference, August, 1986.

4

PROCESSING ELEMENTS

Our goal is to study the issues involved with and to develop technology for constructing building-sized 3
multicomputers with 1997 technology. These machines will be of such a scale that their design will have to
make the most efficient use of wires and energy.

The Named State Processor: I
A computer the size of the ARC will require the ability to switch tasks rapidly to hide transmission n

latency without sacrificing single-thread performance. Peter Nuth and Bill Dally are working on an architecture 3
for a named state processor that achieves this goal by explicitly binding names to all processor registers and
interleaving tasks on a microcycle basis. This mechanism combines the advantages of multi-threading and
multiple register sets for implementing fast context switches and procedure calls. It also provides a general
synchronization mechanisms.

Naming state permits process switches to be performed in essentially zero time as no registers need be
saved or restored. A process switch is performed by simply issuing an instruction fetch with a different process I
ID field. Unlike conventional multithreaded processors, this approach also permits the instructions of a single
process to be pipelined, executing one per cycle, achieving good single thread performance.

Naming the processor state permits several processes to have instructions in the pipeline simultaneously.
Pipeline bubbles due to data dependencies, memory latency, or interprocess communication are filled by
advancing instructions from other processes.

The named state processor performs all synchronization through the use of presence tags on its state.
Synchronization on register dependencies, memory references, and communication actions all use this single
mechanism. 3

Since our last report we have refined the named state processor architecture and defined its interface to
a multicomputer network. We are currently studying instruction scheduling policies (deciding which processesaI
instructions get advanced when) and context cache management policies (deciding which processes state
remains in active storage). A simulator for the processor is under construction.

Concurrent data abstractions: I
Andrew Chien and Bill Dally are developing data abstraction tools that support the development of

programs for large scale multicomputers. A language, concurrent data abstractions, is being defined that
facilitates the specification of aggregates of cooperating objects. Concurrent data abstractions permit the
relationships between objects to be defined textually rather than requiring that the objects connect up a pointer
structure at run-time as is typically done. Common structures (e.g., combining trees) can be defined once and
reused as required. The language also permits nesting of object aggregates and specialization of objects within
the aggregate.

Database applications: U
John Keen and Bill Dally are investigating the application of an ARC sized computer to database

applications. The issues involved include data partitioning, methods for insuring stability and persistence, I
concurrency control, and efficient algorithms for search and update.

Fast Translation Method: 3
II

!5

Bill Dally has developed a one-step translation method that implements paging on top of segmentation.
This method translates a virtual address into a physical address, performing both the segmentation and paging
translations, with a single TLB read and a short add. Previous methods performed this translation in two steps
and required two TLB reads and a long add. Using the fast method, the fine-grain protection and relocation of
segmentation combined with paging can be provided with delay and complexity comparable to paging-only
systems. This method allows small segments, particularly important in object-oriented programming systems,
to be managed efficiently.

Floating point optimization technique:

Bill Dally and Lucien Van Elsen have developed a technique, micro-optimization, for reducing the
operation count and time required to perform numerical calculations. The method involves breakiug floating-
point operations into their constituent integer micro-operations and the optimizing and scheduling the resulting
integer code. The method has been tested using a prototype expression compiler. We are now looking at
extending the method to permit a compiler to perform automatic scaling of numbers. Where it is possible, this

I optimization would convert floating point expressions into integer expressions.

I
I

. ..I i i nnl a ua n a rr- " -

6

COMMUNICATIONS TOPOLOGY AND ROUTING ALGORITHMS

Charles Leiserson returned from a leave of absence at Thinking Machines Corporation January 1, 1989.
He was an invited speaker at the 25th Anniversary Symposium for Project MAC at MIT, and at the Decennial
Caltech VLSI Conference. He also served on the first program committee for the ACM Symposium on Parallel
Algorithms and Architectures. 5

Charles Leiserson and Tom Cormen have been concentrating on finishing the textbook Introducion to
I with Ronald Rivest. Besides offering a combined engineering and theoretical approach to computer

algorithms, the book has several chapters devoted to parallel computing -- a novelty in the area. The book will
be published jointly by MIT Press and McGraw-Hill by the end of 1989.

Shlomo Kipnis has been investigating parallel architectures and interconnection networks. He is trying
to further explore the power of bussed interconnection schemes to route permutations. In addition, he is
investigating the mesh and the hypercube interconnection schemes, and is looking into the problem of
embedding one network in another network Recently, he has also studied the problem of range queries in
computational geometry. Range queries is a fundamental problem in computational geometry with applications
in computer graphics and database retrieval systems.

Marios Papaefthymiou joined the group in December 1988. He has been working with Charles Leiserson
on algorithms for optimizing synchronous circuitry. Recently, he discovered an simple 0(E) algorithm for
pipelining combinational circuitry to achieve a given clock period.

Jeff Fried is currently working on several problems related to the architecture and control algorithms
nc=!=z for high performance com~munication networks. This work includes a study of the impact of synchrony
on the performance of distributed algorithms, and design studies for a VLSI packet router chip. Fried
completed his Master's thesis this semester. His thesis work involved the design of VLSI processors for use
within the interconnection networks found in telecommunications, distributed computing, and parallel
processing. He also completed a study of some of the modularity tradeoffs found in sparse circuit-switched
interconnection networks. In the next year, Fried plans to continue his study of distributed algorithms and
architectures to support tIrem. He will also be considering a number of other problems relating to the design of
switching nodes for use in broadband networks.

Cynthia Phillips continued her investigation of parallel graph contraction algorithms which lead to
simple algorithms for connected components, biconnectivity, and spanning trees of graphs. She developed a
simple contraction algorithm for general n-node graphs which runs in 0(lg2 n) time using 0(n)
processors on an EREW PRAM. This algorithm is used in a contraction algorithm for bounded-degree graphs
which runs in 0(1g n + lg 2 g) time where g is the maximum genus of any connected component. Also,
with Stavros Zenios of the Wharton School at U. Pennsylvania, she began an investigation of parallel
implementations of algorithms for network optimization problems. In particular, they investigated the behavior
of known algorithms, embellished with heuristics, for the assignment problem and nonlinear network flow.

In the past six months, James K Park has been collaborating with Alok Aggarwal and Dina Kravets on a
number of problems relating to totally monotone arrays. Totally monotone arrays arise naturally in a wide
variety of fields, including computational geometry, dynamic programming, string matching, and VLSI river

routing. Park's work with Aggarwal centers on the problem of finding maximum entries in totally monotone
arrays and applications of efficient sequential and parallel algorithms for this problem. Park's work with
Kravets considers other comparison problems (such as sorting and cor-.-mting order statistics) in the context of
totally monotone arrays and applications of efficient solutions to these proc lems.

I

7

Alexander Ishii has completed his masters thesis, which describes his models for VLSI timing
analysis. The model maps continuous data-domains, such as voltage, into discrete, or digital, data domains,
while retaining a continuous notion of time. The majority of the thesis concentrates on developing lemmas and
theorems that can serve as a set of "axioms" when analyzing algorithms based on the modeL Key axioms
include the fact that circuits in our model generate only well defined digital signals, and the fact that
components in our model support and accurately handle the "undefined" values that electrical signals must take
on when they make a transition between valid logic levels. In order to facilitate proofs for circuit properties, the
class of computational predicates is defined. A circuit property can be proved by simply casting the property as
a computational predicate.

Ishii has also been working with Bruce Maggs on a new VLSI design for a high-speed multi-port register
file. Design goals include short cycle-time and single-cycc register window context changes. This research
began as an advanced VLSI class project, under the supervision of Thomas Knight of the MIT Artificial
Intelligence Laboratory.

Ishii has also been working with Ronald Greenberg and Alberto Sangiovanni-Vincentelli of Berkeley on
a multi-layer channel router for VLSI circuits, called MulCht. While based on the Chameleon system
developed at Berkeley, MulCh incorporates the additional feature that nets may be routed entirely on a single
interconnect layer (Chameleon requires the vertical and horizontal sections of a net be routed on diffe,-ent
interconnect layers). When used on sample problems, MulCh shows significant improvements over
Chameleon in area, total wire length, and via count.

Besides his work with Ishii and Sangiovanni-Vincentelli, Ronald Greenberg has been continuing work in
two areas: channel routing for VLSI chips and area-universal networks for general-purpose parallel
computation. With Miller Maley of Princeton, he has been developing techniques for efficiently determining
minimum area routings for single-layer channels and switchboxes, which can be usefully incorporated into
previous work on multi-layer channel routing. In the area of general-purnose parallel computation he has
developed stronger and more general results about the ability of a machin built in a fixed amount of area to
simulate other parallel machines.

Bruce Maggs has been working with Richard Koch, Tom Leighton, Satish Rao, and Arnold Rosenberg.
They have been studying the ability of a host network to emulate a possibly larger guest network. An emulation
is called "work-preserving" if the work (processor-time product) performed by the host is at most a constant
factor larger than the work performed by the guest. A work-preserving emulation is important because it
achieves optimal speedup over a sequential emulation of the guest. Many work-preserving emulations for
particular networks have been discovered. For example, the N-node butterfly can emulate an N log N node
shuffle-exchange graph and vice versa. On the other hand, a work-preserving emulation may not be posuble
unless the guest graph is much larger than the host. For example, a linear array cannot perform a work-
preserving emulation of a butterfly unless the butterfly is exponentially larger than array. Worse yet, a work-
preserving emulation may not exist. A butterfly cannot perform a work-preserving emulation of an expander
graph. These positive and negative results provide a basis for comparing the relative power of different
networks.

Alexander T. lshii, A Digital Model for Level-Clocked Circuitry, Master's thesis, Department of Electrical
Engineering and Computer Science, MIT, August 1988.

t Ronald I. Greenberg, Alexander T. Ishii, and Alberto L. Sangiovanni-Vincenteli. MulCh: A multi-layer
channel router using one, two, and three layer partitions. In IEEE International Conference on
Computer-Aided Design (ICCAD-88), pages 88-91, IEEE Computer Society Press, 1988.

8

SYSTEMS SOFTWARE

Our research over the past year has addressed the design of directory systems, interconnection networks,

and processing elements for large-scale multiprocessors with coherent caches. Because the building-sized
American Resource Computer must exploit locality to scale far beyond the limits of current multiprocessors, a
major part of our effort was devoted to the issue of locality. Briefly, we have developed a model of memory
referencing locality to analyze address streams of existing parallel applications, modified our Mul-T compiler
and run-time system to derive statistics on locality patterns in multiprocessor applications, derived new
performance evaluation models that capture the effects of locality. We are also investigating efficient
performance analysis and data collection techniques for large-scale multiprocessors, and task scheduling
strategies to enhance locality.

Continuing our efforts in parallel trace data collection, we now have a tracer called TMul-T, that can
generate traces for parallel symbolic applications. An implementation of TMuI-T on the Encore Multimax runs
with a slowdown of less than 30x on a single processor. A port of TMuJ-T to the DEC MICROVAX is also
complete. We are now porting TMul-T to the MIPS processor. We have gathered several large traces of
symbolic applications written in Mul-T including MODSIM -- a functional simulator, BOYER -- a theorem I
prover, and several smaller applications. We have continued tracing parallel C applications under the MACH

operating system using the VAX T bit technique. In a joint effort with IBM, we have derived large parallel
FORTRAN traces using a postmortem scheduling method that can incorporate multiple synchronization I
models. FORTRAN traces include SIMPLE, WEATHER, and FFT. We are using these traces in a wide
variety of studies ourselves, and we also plan to distribute our trace data to the research community and to
industry. A slight modification to our parallel TMuI-T tracer has also enabled the emulation of large-scale
multiprocessors.

We now have running simulators for cache/directory systems and interconnection networks. These two
simulators can be plugged back to back to provide the system backend to a processor emulator. Currently we I
can use either our TMul-T system or the FORTRAN post-mortem scheduler as the processor emulator.

We have a new model representing memory referencing locality in multiprocessor systems. This locality
model suitable for multiprocessor cache evaluation is derived by viewing memory references as streams of I
processor identifiers directed at specific cache/memory blocks. This viewpoint differs from the traditional
uniprocessor approach that uses streams of addresses to different blocks emanating from specific processors.
Our view is based on the intuition that cache coherence traffic in multiprocessors is largely determined by the
number of processors accessing a location, the frequency with which they access the location, and the sequence
in which their accesses occur. The specific locations accessed by each processor, the time order of access to
different locations, and the size of the working set play a smaller role in determining the cache coherence
traffic, although they still influence intrincc cache performance. We have some initial results that show that
these processor references directed to a memory blocks display the LRU stack property. If we succeed in
showing this is indeed true across a large set of parallel appfications, then the abundant literature on LRU stack
evaluation for single processors can be straightforwardly used in evaluation of multiprocessor performance.

We are investigating novel VLSI processor architectures for large-scale multiprocessor systems. A
processor called APRIL is being designed. (This processor borrows heavily from the MARCH processor
design of Bert Halstead at the MIT Laboratory for Computer Science, and the Stanford MIPS-X processor
design, but differs substantially from the two. Unlike MARCH, APRIL has hardware interlocks in the pipeline,
does not interleave process threads, and uses software thread scheduling. Unlike MIPS-X, it allows multiple
hardware contexts, and has hardware support for synchronization and futures.) The chief issues being
addressed in this design are rapid context switching, fast trap handling, high single thread performance,
hardware support for synchronization and futures, and register tile organization. An important observation of 3

*9

our study so far has been identifying the specific hardware-software tradeoffs one must make for achieving

overall high system performance. Some examples include hardware versus software for fine-grain task
management and scheduling in a multithreaded processor, and hardware provided synchronization primitives
such as fetch-and-op versus software synthesized primitives from basic interlocked load/store instructions. We
currently have a preliminary instruction-set specification. A Mul-T compiler for this processor and a simulator
are also being written.

The design of a cache-directory and network communications controller to be used in a large-scale
multiprocessor is in progress. The chief issues being addressed are: the programmability and the
implementation efficiency of various shared-mf.rr ory programming paradigms, such as strong serialization
versus weak ordering; Supporting full-empty bits in the cache directory controller; Tradeoffs in controller
design to support context switching, such as re-issuing instructions versus pipeline freezing.

We have analyzed interconnection network architectures that can best exploit the lower average traffic
intensity of cache-coherent systems. Evaluations with packet switched and circuit switched networks, assuming
similar speeds for the switch nodes, show that circuit s-,itching can be superior to packet switching in the
medium scale (256-1000 processors). Our simulations with the parallel FORTRAN traces also indicate that

directories yield better processor utilization than a scheme that does not cache shared data.

We investigated the scalability of cache coherence schemes. We showed that these schemes can scale at
least through 64 processors by simulations against parallel FORTRAN traces. (Memory limitations precluded
our analyzing larger systems.) We observed that synchronization references are the chief impediment to
scalability. We are investigating new scalable synchronization methods that do not incur excessive hardware3 cost.

We have developed a new technique for efficient synchronization called adaptive backoff
synchronization. A purely software approach, adaptive backoff synchronization helps reduce network
contention due to file-grain synchronization accesses across a network. Our technique can help reduce ho-spot
contention in large-scale networks without resorting to hardware-intensive solutions like combining networks.
We are also studying software combining to determine the extent to which a directory cache coherence scheme
can efficiently support file-grain barrier synchronization.

Industry collaborations:
- Parallel FORTRAN applications, post-mortem scheduling,

and address tracing with IBM T. J. Watson Research,
Yorktown, NY. With Harold Stone, Kimming So, Scott Kirkpatrick.

- Affinity scheduling for enhancing multiprocessor memory
referencing locality;, models of multiprocessor referencing,
software cache coherence, with DEC Systems Research Center,
Palo Alto, CA. With Susan Owicki.

- ATUM-2 Multiprocessor data collection efforts in collaboration
with DEC, Hudson, AA. With Dick Sites.

10

ALGORITHMS

Prof. Leighton is continuing his research on networks and algorithms for parallel computation. Recently
he has focussed on the following specific problems: the development of fast packet routing algorithms for
commonly used fixed-connection networks such as the butterfly, array and shuffle-exchange graph, the
development of algorithms to reconfigure networks such as the hypercube around faults, the development of
dynamic on-line algorithms for embedding computational structures such as trees in networks such as the
hypercube in a way that balances computational load and that minimizes the induced communication load on
the network, the development of algorithms for emulating one kind of network on another in a way that
preserves the total amount of work (processors x time) that is done, and the development of efficient
approximation algorithms for a variety of layout related problems such as graph bisection. The particular
advances that have been made in each of these areas is briefly summarized in what follows.

In the area of packet routing, Prof. Leighton and his coauthors have discovered the first store-and-
forward roting algorithm which can route n2 packets in 2n - 2 steps on an n x n array with constant
size queues at each node. They have also discovered a more practical randomized routing algorithm that is
guaranteed to have near-optimal performance for an array of any dimension (including a hypercube), the
butterfly, and the shuffle-exchange graph. The latter algorithm also works for many-one routing algorithms
with combining and performs well in heuristic simulations. The details of these and related results have been
published." tI

In the area of fault-tolerance, Prof. Leighton and his coauthors have shown that a hypercube can tolerate
a very large number (a constant fraction) of randomly located faults without incurring more than a constant
factor loss in performance, no matter how large the hypercube is. They have also discovered simple algorithms
for routing around faults in the hypercube that are guaranteed to perform nearly as well as the best routing
algorithms when no faults are present. The details of this work are described elsewhere.'

In the area of network embeddings and scheduling, Prof Leighton and his coauthors have discovered
optimal algorithms for embedding dynamically growing and shrinking trees in a hypercube so that the
processing load on the nodes of the hypercube is balanced, and so that all communication links are local. This
work has application to the problem of locally scheduling the work assigned to the processors of a hypercube in
a dynamic fashion (i.e., as one computation spawns another, the algorithm determines the processor that will
handle the new task). They have also discovered optimal algorithms for mapping code written for one
architecture onto a different architecture in a way that minimizes the total amount of work required by the
simulating machine. These results are described elsewhere. ""f t #

* T. Leighton, B. Maggs and S. Rao, "Universal Packet Routing Algorithms", IEEE FOCS, pp. 256-269,
October, 1988.

t T. Leighton, F. Makedon, and I. Tollis, "A 2n - 2 Step Algorithm for Routing in an n x n Array with
Constant-size Queues," ACM SPAA, to appear, June, 1989.

t R. Koch, "Increasing the Size of a Network by a Constant Factor Can Increase the Performance by More
Than a Constant Factor," IEEE FOCS, pp. 221-230, October, 1988.

§ J. Hastad, T. Leighton, and M. Newman, "Fast Computation Using Faulty Hypercubes," ACM STOC, to
appear, May, 1989.

fl S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg, "Universal Graphs For Bounded-degree Trees and Planar
Graphs," SIAM J. Discrete Math., to appear, 1989.

R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, "Work-preserving Emulations of Fixed-
connection Networks," ACM STOC, to appear, May, 1989.

t t T. Leighton, M. Newman, and E. Schwabe, "Dynamic Embedding of Trees in Hypercubes with Constant

* 11

Lastly, in the area of approximations algorithms, Prof Leighton and Satish Rao have discovered an
analogue of the max-flow min-cut theorem for multicommodity flow problems that can be used to find the first
good approximation algorithms for a wide variety of NP-hard combinatorial optimization problems such as
graph bisection minimum feedback arc set. This work, and some recent heuristic analysis of some related
algorithms is described elsewhere. t

(continued)
Dilation and Load," ACM SPAA, to appear, June, 1989.

* S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg, "Efficient Embedding of Trees in Hypercubes,"
submitted to SIAM J. Computing.

* T. Leighton and S. Rao, "An Approximate Max-flow Min-cut Theorem for Uniform Multicommodity Flow
Problems with Applications to Approximation Algorithms," IEEE FOCS, pp. 422-431, October, 1988.

T.Bui, C. Heigham, C. Jones, and T. Leighton, "Improving the Performance of the Kernighan-Lin and
Simulated Annealing Graph Bisection Algorithms," DAC, to appear, June, 1989.

12

APPLICATIONS

In the area of applications, over the past half year our group has been working on several different types
of numerical algorithms, both to aid in the design of an ARC, as well as to uncover methods that could
effectively exploit an ARC. In particular, our work has focused on capacitance extraction, parallel circuit
simulation, specialized circuit simulation algorithms for clocked analog circuits and analog signal processing
circuits for early vision, simulation of small geometry devices, and mixed circuit/device simulation.

A fast algorithm for computing the capacitance of a complicated 3-D geometry of ideal conductors in a
uniform dielectric has been developed*. The method is an acceleration of the standard integral equation
approach for multiconductor capacitance extraction. Integral equation methods can not be applied easily to
large problems because they lead to dense matrices which are typically solved with some form of Gaussian
elimination. This implies the computation grows like n3, where n is the number of tiles needed to accurately
discretize the conductor surface charges. We have developed a preconditioned conjugate-gradient iterative
algorithm with a multipole approximation to compute the iterates. This reduces the complexity of the
multiconductor capacitance calculations to grow as n x m where m is the number of conductors.

In the area of parallelizing circuit and device simulation, the key problem is finding efficient techniques
for solving large sparse linear systems. The direct or Gaussian-elimination based solution of circuit simulation
matrices is particularly difficult to parallelize, mostly because the data is structured irregularly, and methods
which attempt to regularize the structure, like nested dissection, lead to matrices that require much more
computation to solve. We are investigating the interaction between sparse matrix data structures, computer
memory structure, and multiprocessor communication (with Prof. W. Dally). One interesting recent result
from simulations is that final performance is much more sensitive to communication throughput than latency.

Another approach to solving large sparse linear systems is through iteration, which is usually more
s:ructured but is not as robust as direct methods. In order to improve the convergence of relaxation methods
for circuit simulation, an algorithm is being investigated that is based on extracting bands from a given sparse
matrix, solving the bands directly, and relaxing on the rest of the matrix. This approach is efficient because
band matrices can be solved in o-der log n time on order n processors, and this approach is more reliable
than standard relaxation, because "less" relaxation is being used. A banded relaxation scheme has been
developed that automatically selects the ordering of the matrix to best exploit the direct solution of the band,
and to automatically select the band sizet. In order to increase the parallelism available from the variable
band algorithm, we are also investigating waveform-Newton, which allows for several timepoints of a transient
simulation to be computed in parallel.

In the area of circuit simulation, the problem of simulating docked analog circuits, like switching filters,
switching power supplies, and phase-locked loops, is being attacked. These circuits are computationally
expensive to simulate using conventional techniques because they are all docked at a frequency whose period is
orders of magnitude smaller than the time interval of interest to the designer. To construct such a long time
solution, a program like SPICE or ASTAP must calculate the behavior of the circuit for many high frequency
clock cycles. Several very efficient algorithms for theses types of problems has been developed, based on
computing the solution over only a few selected high-frequency cycles. In particular, techniques for computing

I
* K. Nabors, J. White, "A Fast Multipole Algorithm for Capacitance Extraction of Complex 3-D

Geometries,"Proceedings, Custom Integrated Circuits Conference, San Diego, CA, 1989.

t A. Lumsdaine, D. Webber, J. White, A. Sangiovanni-Vincentelli, "A Band Relaxation Algorithm for Reliable
and Parallelizable Circuit Simulation," Proceedings, International Conference on Computer-Aided Design,
Santa Clara, CA, October, 1988. 3

I

U

3 13

the transient behavior of switching power converters*, and computing the distortion of switched-capacitor
filters have been developedl. The distortion analysis algorithm is well-suited to parallel computation as it
allows many high frequency cycles to be integrated simultaneously.

A second application for specialized circuit simulation algorithms is the simulation of analog signal
processing circuits used for early vision. These circuits are expensive to simulate with classical methods because
they usually contain large grids of components which must be simulated at an analog level (i.e. one cannot
perform simulations at a switch or gate level as is commonly done with very large digital circuits). Several
properties of the analog signal processing circuits can be exploited to improve the efficiency and parallelizability
of simulation algorithms. As most of these circuits are arranged in large regular grids, the computation
involved is like the computations used to solve certain types of partial differential equations. We expect this
research direction will lead us to generalizations of certain types of fast partial differential equation methods,
and we are, in particular, focusing on waveform multigrid methods.

In the area of device simulation, we are working on simulating short-channel MOS devices. The
difficulty is that the model used in conventional device simulation programs is based on the drift-diffusion
model of electron transport, and this model does not accurately predict the field distribution near the drain in
small geometry devices. This is of particular importance for predicting oxide breakdown due to penetration by
"hot" electrons. There are two approaches for more accurately computing the electric fields in MOS devices,
one is based on adding an energy equation to the drift-diffusion model and the second is based on particle or
Monte-Carlo simulations.

In the first approach, an energy balance equation is solved along with the drift-diffusion equations so
that the electron temperatures are computed accurately. This combined system is numerically less tame than
the standard approach, and must be solved carefully. Implementations of the energy balance equation in
simulators either circumvent this problem by ignoring difficult terms, or they occasionally produce oscillatory
results. Research in this area is to try to develop a simulation program based on the drift-diffusion plus energy
equations which is both efficient and robust. A stable numerical method for 1-D simulation has been
implemented, and present work is to carry this forward to a 2-D simulator.

Work on the second approach, solving the Boltzmann equation with Monte-Carlo algorithms, is just
beginning. We are focusing on issues of the numerical interaction between the computation of the self-
consistent electric fields and the simulation timesteps. In addition we are investigating approaches which
parallelize efficiently.

Finally, we are continuing to investigate accelerating mixed circuit/device transient simulation with
waveform relaxation (WR), that is, applying WR to the sparsely-connected system of algebraic and ordinary
differential equations in time generated by standard spatial discretization of the drift-diffusion equations that
describe MOS devices. Recent results include proving an extension to a result indicating that the WR algorithm
will converge in a uniform manner independent of the time interval, and that a multirate integration will be
stable independent of timestept . In addition, a preliminary 2-D device simulation program based on WR has
been written, and experiments on accelerating WR convergence using SOR and Conjugate-Gradient methods
are in progress.

K. Kundert, J. White, A. Sangiovanni-Vincentelli, "An Envelope-Following Method for the Efficient
Transient Simulation of Switching Power Converters," Proceedings, International Conference on
Computer-Aided Design, Santa Clara, CA, October, 1988.

t K. Kundert, J. White, A. Sangiovanni-Vincentelli, "A Mixed Frequency-Time Approach for Distortion
Analysis of Switched Capacitor Filters," IEEE Journal of Solid State Circuits, April, 1989.

f M. Crow, J. White, M. Ilic "Stability and Convergence Aspects of Waveform Relaxation Applied to Power
System Simulation," Proceedings, International Symposium on Circuits and Systems, Portland, OR, 1989.

I

Research on techniques for logic synthesis, testing and design-for-Testability focuses on the optimization
of combinational and sequential circuits specified at the register-transfer or logic levels with area, performance
and testability of the synthesized circuit as design parameters. The research problems being addressed are:

e Area and performance optimization of general sequential circuits composed of interacting finite
state machines

• Test generation for general sequential circuits without the restrictions of Scan Design rules
* The exploration of relationships between combinational/sequential logic s, -iesis and testability

with a view to the development of techniques for the automatic synthesis of fully and easily testable circuits.

Interacting finite state machines (FSMs) are common in industrial chip designs. While optimization
techniques for single FSMs are relatively well developed, the problem of optimization across latch boundaries
has received much less attention. Techniques to optimize pipelined combinational logic so as to improve
area/throughput have been proposed. However, logic cannot be straightforwardly migrated across latch
boundaries when the basic blocks are sequential rather than combinational circuits. We have addressed the
problem of logic migration across state machine boundaries so as to make particular machines less complex at
the possible expense of making others more complex.! This can be useful from both an area and
performance point of view. Optimization algorithms, based on automata-theoretic decomposition techniques,
that incrementally modify state machine structures across latch boundaries, so as to improve area or throughput
of a sequential circuit, have been developed. We are now looking toward developing more global techniques for
logic migration in sequential circuits.

Interacting sequential circuits can be optimized by specifying and exploiting the don't care conditions
that occur tbe boundaries of the different machines. While the specification of don't care conditions for
interconnected combinational circuits is a well-understood problem, the corresponding sequential circuit

problem has received very little attention. We have defined a complete set of don't cares associated with
arbitrary, interconnected sequential machines. These sequential don't cares represent both single vectors and
sequences of vectors that never occur at latch boundaries. Exploiting these don't cares can result in significant
reductions in the number of states and complexities of the individual FSMs in a distributed specification. We
have developed algorithms for the systematic exploitation of these don't carest and are currently improving
the performance of these algorithms.

Optimization of single or lumped FSMs has been the subject of a great deal of research. Optimal state
assignment and FSM decomposition are critical to the synthesis of area-efficient logic circuits.

The problem of FSM decomposition entails decomposing a machine into interacting submachines so as
to improve area or performance of the circuit. We have developed new decomposition techniques based on
factorization of sequential machinest,I This form of optimization involves identifying subroutines or factors
in the original machine and extracting these factors to produce factored and factoring machines. Factorization
can result in submachines which are smaller and faster than the original machine. Experimental results indicate

S. Devadas, "Approaches to Multi-Level Sequential Logic Synthesis," Proceedings of 26th Design Automation
Conference, Las Vegas, NV, June, 1989.

t S. Devadas, "Approaches to Multi-Level Sequential Logic Synthesis," Proceedings of 26th Design Automation
Conference, Las Vegas, NV, June, 1989.

$ S. Devadas and A. R. Newton, "Decomposition and Factorization of Sequential Finite State Machines," I
Proceedings, International Conference on Computer-Aided Design, Santa Clara, CA, November, 1988.

§ S. Devadas, "General Decomposition of Sequential Machines: Relationships to State Assignment,"
Proceedings, 26th Design Automation Conference, Las Vegas, NM, June, 1989.

15

that factorization compares favorably to other techniques for FSM decomposition. We are also currently
exploring the relationships between factorization and the optimal state assignment problem.

The problem of optimal state assignment entails finding an optimal binary encoding of the states in a
FSM, so the encoded and minimized FSM has minimum area. All previous automatic approaches to state
encoding and assignment have involved the use of heuristic techniques. Other than the straightforward,
exhaustive search procedure, no exact solution methods have been proposed. A straightforward, exhaustive
search procedure requires O(N I) exact Boolean minimizations, where N as the number of symbolic states.
We have discovered a new minimization procedure' for multiple-valued input and multiple-valued output
functions that represents an exact state assignment algorithm. The present state and next state spaces of the
State Transition Graph of a FSM are treated as multiple-valued variables, taking on as many values are there
are states in the machine. The minimization procedure involves constrained prime implicant generation and
covering and operates on multiple-valued input, multiple-valued output functions. If a minimum set of prime
implicants is selected, an minimum solution to the state assignment problem is obtained. While our covering
problem is more complex than the classic unate covering problem of two-level Boolean minimization, a single
logic minimization step replaces O(N!) minimizations. We are currently evaluating the performance of this
exact algorithm and developing computationally-efficient heuristic state assignment strategies based on the
exact algorithm.

The problem of four-level Boolean minimization or the problem of finding a cascaded pair of two-level
logic functions that implement another logic function, such that the sum of the product terms in the two
cascaded functions or truth-tables is minimum, can also be mapped onto an encoding problem, similar to state
assignment. We have extended the exact state encoding algorithm to the four-level Boolean minimization case.

After chip fabrication, a chip has to be tested for correct functionality. Logic testing is a very difficult
problem and has traditionally been a post-design step; however, the impact of the design or synthesis process on
the testability of the circuit is very profound.

Our research in the testing area involves test pattern generation for sequential circuits as well as the
development of synthesis-for-testability approaches for combinational and sequential circuits. Highly sequential
circuits, like datapaths, are not amenable to standard test pattern generation techniques. We are attempting to
develop algorithms that are efficient in generating tests for datapath-like circuits, by exploiting knowledge of
both the sequential behavior and the logic structure of the logic circuit.

Recently, there has been an explosion of interest in incorporating testability measures in logic synthesis
techniques. Our research follows the paradigm that redundancy in a circuit, which renders a circuit untestable,

is the result of a sub-optimal logic synthesis step. Thus, optimal logic synthesis can, in principle, ensure
fully testable combinational or sequential logic designs.

The relationships between redundant logic and don't care conditions in combinational circuits are well
known. Redundancies in a combinational circuit can be explicitly identified using test generation algorithms or
implicitly eliminated by specifying don't cares for each gate in the combinational network and minimizing the
gates, subject to the don't care conditions. We have explored the relationships between redundant logic and
don't care conditions in arbitrary, interacting sequential circuits.t,4 Stuck-at faults in a sequential circuit

S. Devadas and A. R. Newton, "Exact Algorithms for Output Encoding, State Assignment and Four-Level
Boolean Minimization," Electronics Research Laboratory Memorandum M89/8, University of
California, Berkeley, February, 1989.

t S. Devadas et. al., "Irredundant Sequential Machines Via Optimal Logic Synthesis," Electronics Research
Laboratory Memorandum M88/52, University of California, Berkeley, August, 1988.

$ S. Devadas et. al., "Redundancies and Don't Cares in Sequential Logic Synthesis," in preparation.

16

may be testable in the combinational sense, but may be redundant because they do not alter the terminal
behavior of a non-scan sequential machine. These sequential redundancies result in a faulty State Transition
Graph (STG) that is equivalent to the STG of the true machine. We have classified all possible kinds of
redundant faults in sequential circuits, composed of single or interacting finite state machines. For each of the
different classes of redundancies, we define don't care sets which if optimally exploited will result in the implicit I
elimination of any such redundancies in a given circuit. We have shown that the exploitation of sequential don't
cares that correspond to sequences of vectors that never appear in cascaded or interacting sequential circuits, is
critically necessary in the synthesis of irredundant circuits. Using a complete don't care set in an optimal I
sequential synthesis procedure of state minimization, state assignment and combinational logic optimization
results in fully testable, lumped or interacting finite state machines. Preliminary experimental results indicate
that irredundant sequential circuits can be synthesized with no area overhead and within reasonable CPU times
by exploiting these don't cares.

Procedures that guarantee easy testability of sequential machines via constraints on the optimization
steps are also a subject of research. These procedures address both the testability of circuits under the stuck-at 1
fault and the crosspoint fault model. These procedures may result in circuits that are larger than area-minimal
circuits, but which are more easily testable.

The different pieces of the research described above are all focused on an algorithmic approach for the I
optimal synthesis of custom integrated circuit chips with area, performance and testability as design parameters.
The various techniques can be incorporated into an ASIC synthesis system. I

I
I

I

I

I
I

17

PUBLICATIONS LIST

A. T. Ishii, "A Digital Model for Level-Clocked Circuitry, M. S. Thesis, Department of Electrical Engineering and
Computer Science, MIT, August 1988.

A. Aggarwal and J. Park, "Notes on Searching in Multidimensional Monotone Arrays," Proceedings of the 29th
Annual IEEE Symposium on Foundations of Computer Science, October 1988.

J. Fried and B. Kuszmaul, "NAP (No ALU Processor): The Great Communicator," Proceedings of the Second
Symposium on Frontiers of Massively Parallel Computation, October 1988.

T. Leighton, B. Maggs, and S. Rao, "Universal Packet Routing Algorithms," Proceedings of the IEEE 29th
Annual Symposium on Foundations of Computer Science, October 1988, pp. 256- 271. Also MIT VLSI Memo
No. 88-492, December 1988.

T. Leighton and S. Rao, "An Approximate Max-Flow Min-Cut Theorem for Uniform Multicommodity Flow
Problems with Applications to Approximation Algorithms," IEEE Foundations of Computer Science, October
1988, pp. 422-431.

T. Leighton, B. Maggs and S. Rao, "Universal Packet Routing Algorithms," IEEE Foundations of Computer
Science, October 1988, pp. 256-269. Also, MIT VLSI Memo No. 88-492, December 1988.

R. Koch, "Increasing the Size of a Network by a Constant Factor ca'n Increase the Performance by more than a
Constant Factor," IEEE Foundations of Computer Science, October 1988, pp. 221-230.

S. Malitz, "Genus g Graphs have Pagenumber Ofg ," IEEE Foundations of Computer Science, October 1988,
pp. 458-468.

James K Park, "Notes on Searching in Multidimensional Monotone Arrays," 29th Annual IEEE Symposium on
Foundations of Computer Science, White Plains, New York, October 26, 1988.

Alex Ishii, "A Multi-Layer Channel Router Using One, Two, and Three Layer Partitions, or Why Four Layers
of Interconnect Really Are Better Than Three," ICCAD-88, San Jose, California, November 8, 1988.

W. J. Dally, "Performance Analysis of k-ary n-cube Interconnection Networks," to appear in IEEE Transactions
on Computers. Also MIT VLSI Memo No. 87-424, November 1987.

K. Kundert, J. White, and A. Sangiovanni-Vincentelli, "An Envelope-Following Method for the Efficient
Transient Simulation of Switching Power Converters," Proceedings International Conference on Computer-Aided
Design, Santa Clara, California, November 7-10,1988.

A. Lumsdaine, D. Webber, J. White, and A. Sangiovanni-VincenteUi, "A Band Relaxation Algorithm for
Reliable and Paraflelizable Circuit Simulation," Proceedings International Conference on Computer-Aided
Design, Santa Clara, California, November 7-10, 1988.

S. Devadas and A. R. Newton, "Decomposition and Factorization of Sequential Finite State Machines,"
Proceedings, International Conference on Computer-Aided Design, Santa Clara, California, November 1988.

__________________________ ___________________ ___________________ _____________

18

J. A. S. Fiske, "A Reconfigurable Arithmetic Processor," M. S. Thesis, Department of Electrical Engineering and
Computer Science, MIT, December 16, 1988.

D. L. Standley and J. L. Wyatt, Jr., "Circuit Design Criteria for Stability in a Class of Lateral Inhibition Neural
Networks," Proceedings, IEEE Conference on Decision and Control, Austin, Texas, December 7-9, 1988. Also
MIT VLSI Memo No. 88-477, October 1988.

M. J. Foster and R. I. Greenberg,"Lower Bounds on the Area of Finite-state Machines," Information Processing
Letters, 30(1):1--7, January 1989.

J. Fried, VLSI Processor Design for Communication Networks, M.S. Thesis, Department of Electrical
Engineering and Computer Science, MIT, January 1989.

J. Fried, "Yield Modeling Using the SPIROS Redundancy Planner," Proceedings of the 1st International
Conference on Wafer-Scale Integration, January 1989.

J. Park, Notes on Searching in Multidimensional Monotone Arrays, S.M. thesis, Department of Electrical
Engineering and Computer Science, MIT, January 1989.

J. Fried, E. Daly, T. Lyszarcz, and M. Cooperman, "A Yield-Enhanced Crosspoint Switch Chip Using e-Beam
Restructuring," IEEE Transactions on Solid-State Circuits, February 1989.

C. E. Leiserson, "VLSI Theory and Parallel Supercomputing," Decennial Caltech VLSI Conference, ed. C. Seitz,
MIT Press, March 1989.

S. Owicki and A. Agarwal, "Evaluating the Performance of Software Cache Coherence," to appear in ACM,
Proceedings, Architectural Suppori for Programming Languages and Operating Systems-III, April 1989. Also MIT
VLSI Memo No. 88-478, October 1988.

K. Kundert, J. White, and A. Sangiovanni-Vincentelli, "A Mixed Frequency-Time Approach for Distortion
Analysis of Switched Capacitor Filters." IEEE Journal of Solid State Circuits, April 1989. Also MIT VLSI
Memo No. 88-480, October 1988.

R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg,"Work-preserving Emulations of Fixed-connection
Networks," to appear in Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 1989.

K. Nabors and J. White, "A Fast Multipole Algorithm for Capacitance Extraction of Complex 3-D Geometries"
to appear in Proceedings Custom International Circuits Conference, San Diego, California, May 16-18, 1989.

M. Crow, J. White, and M. lic, "Stability and Convergence Aspects of Waveform Relaxation Applied to Power
System Simulation," to appear in Proceedings International Symposium on Circuits and Systems, Portland,
Oregon, May 8-11, 1989.

R. Koch, T. Leighton, B. Maggs, S. Rao and A. Rosenberg, "Work-Preserving Emulations of Fixed-Connection
Networks," to appear in ACM Symposium on Theory of Computing, May 1989.

J. Hastad, T. Leighton, M. Newman, "Fast Computation using Faulty Hypercubes," to appear in ACM
Symposium on Theory of Computing, May 1989..

A. Agarwal and M. Cherian, "Adaptive Backoff Synchronization Techniques," to appear in IEEE, Proceedings
of the 16th Annual Symposium on Computer Archite -e,,June 1989.

II

19

T. Knight, "Technologies for Low Latency Interconnection Networks," to appear in Symposium on Parallel
Algorithms and Architectures, June 1989.

C. Phillips, "Parallel Graph Contraction," to appear in First Annual ACM Symposium on Parallel Algorithms
and Architectures, June 1989.

A. Agrawal, G. Blelloch, R. Krawitz, and C. Phillips, "Four Vector-matrix Primitives," to appear in First Annual
A CM Symposium on Parallel Algorithms and Architectures, June 1989

P. Agrawal, R. Tutundjian, and W. J. Daly, "Algorithms for Accuracy Enhancement in a Hardware Logic
Simulator,"Proceedings of the 26th ACM/IEEE Design Automation Conference, June 1989.

T. Leighton, F. Makedon and I. Toilis, "A 2n-2 Step Algorithm for Routing in an n x n Array with Constant-Size
Queues", to appear in A CM Symposium on Parallel Algorithms and Architectures, June 1989.

T. Leighton, M. Newman, and E. Schwabe, "Dynamic Embedding of Trees in Hypercubes with Constant
Dilation and Load," to appear in ACM Symposium on Parallel Algorithms and Architectures, June 1989.

T. Bui, C. Heigham, C. Jones, and T. Leighton, "Improving the Performance of the Kernighan-Lin and
Simulated Annealing Graph Bisection Algorithms," to appear in Proceedings, Design Automation Conference,
June 1989.

S. Devadas, "Approaches to Multi-Level Sequential Logic Synthesis," to appear in Proceedings of 26th Design
Automation Conference, Las Vegas, Nevada, June 1989.

S. Devadas, "General Decomposition of Sequential Machines: P.elationships to State Assignment," to appear in
Proceedings, 26th Design Automation Conference, Las Vegas, Nevada, June 1989. Also to appear as MIT VLSI
Memo No. 89-510, March 1989.

R. I. Greenberg, A. T. Ishii, and A. L. Sangiovanni-Vincentelli, "MulCh: A Multi-layer Channel Router using
One, Two, and Three Layer Partitions," IEEE International Conference on Computer-Aided Design (ICCAD-
88), pp. 88--91, IEEE Computer Society Press, 1988.

C. Phillips and S. A. Zenios, "Experiences with Large Scale Network Optimization on the Connection
Machine," Impact of Recent Computer Advances on Operations Research, Elsevier Science Publishing Co., New
York, 1989.

W. J. Dally, "The J-Machine: System Support for Actors," Concurrent Object Programmingfor Knowledge
Processing: An Actor Perspective, C. Hewitt and G. Agha editors, MIT Press, 1989. Also MIT VLSI Memo No.
88-491, December 1988. Also MIT VLSI Memo No. 88-491, December 1988.

W. J. Dally, "Mechanisms for Concurrent Computing," Proceedings of the International Conference on Fifth
Generation Computer Systems, edited by ICOT, vol. 1, pp. 154-156, 1988.

W. Horwat, A. A. Chien, and W. J. Dally, "Experience with CST: Programming and Implementation,"
Proceedings of the ACM SIGPLAN '89 Conference on Programming Language Design and Implementation, 1989.

S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg, "Universal Graphs for Bounded-deg : Trees and Planar
Graphs," to appear in SIAMJ. Discrete Math, 1989.

20

D. L. Standley and J. L. Wyatt, Jr., "Stability Criterion for Lateral Inhibition and Related Networks that is
Robust in the Presence of Integrated Circuit Parasitics," to appear in IEEE Transactions on Circuits and
Systems, Special Issue on Neural Networks, 1989. Also MIT VLSI Memo No. 88-494, November 1988.

S. Devadas, H.-K. T. Ma, and A. R. Newton, "Easily Testable PLA-based Finite State Machines," to appear in
FTCS-19, June 1989. Also to appear as MIT VLSI Memo No. 89-514, March 1989.

INTERNAL MEMORANDA

S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg, "Efficient Embedding of Trees in Hypercubes," submitted
to SIAMJ. Computing, October 1988.

T. Leighton, "A 2d-1 Lower Bound for 2-Layer Knock-Knee Channel Routing," submitted to SIAM J. Discrete
Math, November 1988.

A. Aggarwal, T. Leighton, and K. Palem, "Area-Time Optimal Circuits for Iterated Addition in VLSI,"
submitted to IEEE Transactions on Computers, November 1988.

B. Berger, M. Brady, D. Brown, and T. Leighton, "Nearly Optimal Algorithms and Bounds for Multilayer
Channel Routing', submittcd to JA CM, February 1989.

A. Agarwal and A. Gupta, "Temporal, Processor, and Spatial Locality in Multiprocessor Memory References,"
MIT VLSI Memo No. 89-512, March 1989.

A. Aggarwal and J. Park, "Sequential Searching in Multidimensional Monotone Arrays," submitted for
publication toAlgorithmica.

A. Aggarwal and J. Park, "Parallel Searching in Multidimensional Monotone Arrays," submitted for publication
to Algorithmica.

J. Fried and P. Kubat, "Reliability Models for Facilities Switching," submitted to IEEE Transactions on
Reliability.

J. Kilian, S. Kipnis, and C. E. Leiserson, "The Organization of Permutation Architectures with Bussed 3
Interconnections," MIT/LCS/TM-379, January 1989, and also VLSI-Memo 89-500, January 1989.

W. J. Dally, "Fine-Grain Concurrent Computing." 3
W. J. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R. Lethin, P. Nuth, and S. Wills, "The J-
Machine: A Fine-Grain Concurrent Computer." 3
W. J. Dally, "A Fast Translation Method for Paging on top of Segmentation."

Ronald I. Greenberg, "Area-Universal Networks," extended abstract. 3
TALKS WITHOUT PROCEEDINGS 3

Charles E. Leiserson. "Very Large Scale Computing," 25th Anniversary Symposium for Project MAC, MIT,
October 1988. 3

U

21

J. L. Wyatt, Jr., "Design Method for Lateral Inhibition Networks that is Provably Stable in the Presence of
Circuit Parasitics," October 1988, Division of Applied Sciences, Harvard University, Cambridge, Massachusetts.

J. White,"An Envelope-Following Method for Detail Simulation of Switching Power Supplies," MIT Computers
in Power Systems Conference, Cambrdge, Massachusetts, October 31, 1988.

5 J. White, "Numerical Simulation of Switching Power and Filter Circuits," MIT Electrical Engineering
Department Colloquium, November 21, 1988.

F. T. Leighton, "Packet Routing Algorithms," Distinguished Lecture, University of British Columbia,
December 1988.

F. T. Leighton, "Packet Routing Algorithms for Fixed-Connection Networks," Stanford University, Palo Alto,
CPA, December 1988; International Computer Science Institute, Berkeley, California, January 1989; IBM
Almaden, California, January 1989.

£ B. Maggs, "Universal Packet Routing Algorithms," MIT VLSI Research Review, Cambridge, Massachusetts,
December 19, 1988.

R. Koch, "Increasing the Size of a Network by a Constant Factor can Increase Performance by more than a
Constant Factor," MIT VLSI Research Review, Cambridge, Massachusetts, December 19, 1988.

M. Cherian, "Adaptive Backoff Synchronization Techniques," MIT VLSI Research Review, Cambridge,
Massachusetts, December 19, 1988.

S. Fiske, "A Reconfigurable Arithmetic Processor," MIT VLSI Research Review, Cambridge, Massachusetts,
December 19, 1988.

S. Rao, "An Approximate Max-Flow Min-Cut Theorem for Uniform Multicommodity Flow Problems with
Applications to Approximation Algorithms," MIT VLSI Research Review, Cambridge, Massachusetts,
December 19, 1988.

A. Lumsdaine, "A Band Relaxation Algorithm for Reliable and Parallelizable Circuit Simulation," MIT VLSI
Research Review, Cambridge, Massachusetts, December 19, 1988.

F. T. Leighton, 'Networks, Parallel Computation, and VLSI Design," Distinguished Lectures, U. Oregon and
NCUBE (OCATE) January 1989.

F. T. Leighton, "A Dynamic Algorithm for Embedding Trees in Hypercubes with Constant Dilation,"
International Computer Science Institute, Berkeley, California, January 1989.

Ronald I. Greenberg, "Area-Universal Networks," at Polytechnic University on February 6, 1989 and Princeton3 University on February 28, 1989.

19(?9 C4hck1 VLsJ- Couif.

VLSI Theory and Parallel Supercomputing

Charles E. Leiserson

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Invited Presentation

Ten years ago at this conference, Clark Thompson introduced a simple.
graph-theoretic model for VLSI circuitry [22]. In Thompson's model, a circuit
is a graph whose vertices correspond to active circuit elements and whose edges
correspond to wires. A VLSI layout is a mapping of the graph to a two-dimensional
grid. such that each vertex is mapped to a square region of the grid and each edge
is mapped to a path in the grid. Unlike the classical notions of a graph embedding
from mathematics, Thompson's model allows edges of a graph to cross over one
another, like wires on an integrated circuit.

The interesting cost measure in VLSI is area. In Thompson's model, area can
be measure as the number of grid points occupied by edges or vertices of the
graph. Quickly, the minimum-area layouts for familiar graphs were catalogued.
As shown in Figure 1, a mesh (two-dimensional array) with n vertices (V/ by v/'n)
has 1(n) area.' The normal way of drawing a complete binary tree (Figure 2a) has
e(n Ig n) area. but the "H-tree" layout (Figure 2b) is much better: it has e(n) area.
A hypercube, which is a popular interconnection network for parallel computers,
requires consi ierably more area-e(n 2).

What causes a hypercube to occupy so much area? Although the size of a
vertex grows slowly with the number of vertices in a hypercube, most of the area of a
hypercube layout is devoted to wires. Figure 3 shows how the the problem of wiring
a hypercube grows with the size of the hypercube. Wires are expensive, and wire
area represents the capital cost of communication on a VLSI chip. By measuring
communication costs in terms of the geometric concept of area, Thompson's model
enabled a mathematical theory of communication in VLSI systems to develop.

From its origin. VLSI theory has expanded in many fruitful and interesting
directions. Rather than attempting to describe the breadth of research in VLSI
theory, however, I would like to revisit the accomplishments along one narrow

'The notation e(f(n)) means a function that grows at the same rate as f(n) to within a
constant factor as n becomes large. The notation 0(f(n)) means a function that grows no more
quickly, and £2(f(n)) means a function that grows no more slowly. Formal definitions for these
terms can be found in any textbook on analysis of computer algorithms.

I
I

I

)I

Figure 1: A mesh (two-dimensional array) on n vertices has a VLSI layout with
e(n) area.

I

(a) (b) 3
Figure 2: A complete binary tree on n vertices laid out in the standard way (a)
takes e(nlgn) area, but an H-tree layout (b) requires only e(r) area. 3

n

Figure 3: Illustrations (not layouts) of hypercubes on 4, 8, 16, and 32 vertices. Any
layout of an n-vertex hypercube requries £l(n2) area.

path-layout theory-which I believe will have a fundamental impact on the
architecture of large parallel supercomputers.

In his early work. Thompson discovered an important lower bound. The area of
an n-vertex graph is related to its bisection width: the minimum number of edges
that must be removed to partition the graph into two subgraphs of n/2 vertices
(to within 1, if the number of vertices is odd). For example, an n-vertex mesh has
a bisection width of V\'. A complete binary tree has a bisection width of 1. A
hypercube has a bisection width of n/2. Thompson proved that any layout of a
graph with bisection width w requires f2(wl) area.

It turns out that a small bisection width does not lead immediately to a
small-area layout. After all, if we take two n/2-vertex subgraphs, each with E(n2)
area, and connect them by a single edge, the resulting graph has a bisection width of
1 but still requires e(n 2) area. Leslie Valiant and I were able to show in independent
work [24, 14, 15], however, that if there is a good recursive decomposition of a
graph-one where we can keep subdividing the subgraphs without cutting many
edges-then the graph has a small layout. For example, not only complete binary
trees, but any binary tree, no matter how badly balanced, can be laid out in O(n)
area by a divide-and-conquer method. Valiant and I were also able to show that
this method lays out any n-vertex planar graph in O(n 1g2 n) area. Later, Leighton
was able to show that a variant of our method was optimal on any graph to within
a O(lg 2 n) factor in area [9).

Leighton also introduced an interesting graph which he called the tree-of-meshes
graph. shown in Figure 4. He was able to prove that this graph requires Qi(n Ig n)
area, thereby refuting a conjecture of mine that all planar graphs could be laid out

in 0 (nI))ra

which ires re no glloe tocrs Three-dmesioa inegrtonwah.ude

by osnbrg [20) eigns an osenes [1nd VLSeetheorg and etherso [5].est

inaOu tlern n waec iciswssuidbyRsneg[9,Liho n
Numsers othe ,1]nreene n Elayuttheory he eenkabtind--o grasyito

chis wa tued byl Paterson uzaSye [1] and Bhatt and Leiserson]
[I] ate pakain onsta its rwe prsengsalogu torte. staiant [24 Thompo'

modSdel At1 any Dlevel ofLekig-hon, bads ricke racks stuie VLIcabints-i
manufctrirs aecnoalogyt crosis. thee-dumenoxnal onecrtion s studoe a

packag tob hsalernei thersan thrnumbrocmoets ws ttde bRoeb [ightn acen

Thmanuacun moeclg cosquerins wthsie nsupor 4s external connections

but it can contain s 2 vertices, which is considerably larger than 4s as s becomes
large.

Figure 5: Packaging a complete binary tree.

As an example of a result [151 in packaging, Figure 5 shows a novel way to
package a complete binary tree using 4-pin packages of a single type. Each chip
contains one internal node of the tree, with three external connections, and the
remainder of the chip is packed as full as possible with a complete binary tree, with
one external connection. To assemble a tree with twice as many leaves, we use two
chips. We wire up one of the unconnected internal nodes on one of the chips as the
parent of the two complete binary trees. We are left with a complete binary tree
with twice as many leaves, plus one unconnected internal node. Thus, considering
the two chips as a single unit, the structure is the same as the one with which we
began. By repeating the process, we can recursively assemble a complete binary
tree of arbitrarily large size.

The work in layout theory culminated with the development by Bhatt and
Leighton [1] of a general framework for VLSI layout. They proposed a layout
method with which they were able to obtain optimal or near-optimal layouts for
many graph-embedding problems. Their method has three steps. First, recursively
bisect the graph, forming a decomposition tree of the graph. Second, embed the
graph in the tree-of-meshes graph (Figure 4), typically, with the vertices of the
graph at the leaves of the tree-of-meshes graph. The meshes in the tree-of-meshes
are used as crossbar switches for routing the edges of the graph. The layout of
the graph is then obtained by looking at where the vertices and edges are mapped
when the the tree-of-meshes graph is laid out according to known good layouts.

It seemed to me at the time that Bhatt and Leighton had solved nearly all the
interesting open problems in VLSI layout theory. All new results in the area would
be little more than refinements of existing methods with no more real insights into
the nature of interconnectivity. I turned my attention toward parallel computation,
in which I bad continued to be involved since my work with H. T. Kung on systolic
arrays [8].

In fact, I was very much a proponent of special-purpose parallel computation

over general-purpose parallel computation, largely as a resuilt of my work on VLSI

layout theory. After all, as Kung and I had shown, and as Kung has continued
to forcefully demonstrate, many computations can be performed efficiently on
simple linear-area structures such as one and two-dimensional arrays. These
special-purpose networks have the nice property that they can be laid out so
that processors are dense and packaging costs are minimized. Moreover, for many
problems, they offer speedup which is linear in the number of processors in the
systolic array.

General-purpose parallel computers, on the other hand, are typically based
on interconnection networks, such as hypercubes, that are very costly for the
computation they provide. For example, any hypercube network embedded in
area A has at most O(v'-) processors. The processors are therefore sparse in the
embedding, and connections dominate the cost. Similar results can be shown for a
three-dimensional VLSI model. Only O(V 21 3) processors of a hypercube network
can fit in a volume V.

Hypercube networks do have a major advantage over many other networks for
parallel computing, however. They are universal: a hypercube on n processors can
simulate any n-processor bounded-degree network in 0(lg n) time. The simulation
overhead is polylogarithmic (a polynomial of Ig n), an indication that the simulation
is a parallel simulation. A polynomial overhead in simulation is less interesting,
since 0(n) overhead is easily obtained by a serial processor simulating each of the
n processors in turn.

The proof that an n-processor hypercube is universal goes roughly as follows.
Suppose we have a bounded-degree network R with n processors. Each processor
can communicate with all its neighbors in unit time. The hypercube can simulate
the network, therefore, by sending at most a constant number of messages from each
processor, where each message contains the information that travels on one of the
interconnections in R. It turns out, all messages can be routed on the hypercube
to their destinations in O(lg n) time [23].

The notion of universality-the ability of one machine to efficiently simulate
every machine in a class-is central to the origins of computer science. A universal
machine is the computer theorist's idea of a general-purpose, as opposed to
multipurpose, machine. A universal machine can do the function of any machine,
just by programming it, or, in the case of parallel-processing networks, just by
routing messages. A universal machine may not be the best machine for any
given job, but it is never much worse than the best. The universality theorem
for hypercubes does not say that a hypercube is the fastest network to build on n
processors. What it says is that the fastest special-purpose network for any given
problem can't be much faster.

From a VLSI theory standpoint, however, a special-purpose parallel machine has
a clear advantage over a universal parallel machine. Packaging its network can cost
much less. And although universality is a selling point, our economy favors machines
that are cheap and efficient, even if they are not universal. (How many combination

telephone-lawnmower-toothbrushes have been sold recently?) Special-purpose
networks for parallel computation are much cheaper than hypercube networks.
Thus, for a long time, I was skeptical about the cost-effectiveness of general-purpose
parallel computing.

I changed my mind, however, and became an advocate general-purpose parallel
computing when I started to look more closely at the traditional assumptions
concerning universal networks. In fact, from a VLSI theory perspective, I discovered
that hypercubes are not really "universal" at all! An n-processor hypercube may
be able to efficiently simulate any n-processor bounded-degree network, but if we
normalize by area instead of by number of processors, we discover that an area-A
hypercube cannot simulate all area-A networks efficiently. For example, since an
area-A hypercube has only Et(V-) processors, it can't simulate an area-A mesh,
which has 9(A) processors, in polylogarithmic time. A :.etwork that is universal
from a VLSI point of view should be a network that for a given area can efficiently
simulate any other network of comparable area.

One such area-universal network is a fat-tree [16, 6], which is based on Leighton's
tree-of-meshes graph. As shown in Figure 6, processors occupy the leaves of the tree.
and the meshes are replaced with switches. Unlike a computer scientist's traditional
notion of a tree, a fat-tree is more like a real tree in that it gets thicker further
from the leaves. Local messages can be routed within subtrees, like phone calls in a
telephone exchange, thereby requiring no bandwidth higher in the tree. The number
of external connections from a subtree with m processors is proportional to v/.
which is the perimeter of a region of area m. The area of the network is O(n lg2 n),
which is nearly linear in the number n of processors. Thus, the processors are
packed densely in the layout.

Any network R that fits in a square of area n can be efficiently simulated by
an area-universal fat-tree on n processors. To perform the simulation, we ignore
the wires in R and map the processors of R to the processors of the fat-tree in the
natural geometric way, as shown in Figure 7. As in the hypercube simulation, each
wire of R is replaced by a message in the fat-tree. If we look at any m-processor
subtree of the fat-tree, it simulates at most a region of area m in the layout of R.
The number of wires that can leave this area-m region in R's layout is O(v/'),
and the fat-tree channel connecting to the root of the subtree has -)(V/_) wires.
Thus, the load factor of the channel, the ratio of the number of messages to channel
bandwidth, is 0(1). It turns out that there are routing algorithms [16, 6, 12 that
effectively guarantee that all messages are delivered in polvlugarithmic time. (In
fact, th"' algorithms can deliver messages near optimally even if the load factor is
quite large.)

Similar universality theorems can be proved for three-dimensional VLSI models
using volume-universal fat-trees. For a fat-tree to be universal for volume, however,
the channel capacities must be selected differently from thosc in an area-universal
network. Whereas the average growth rate of channels in an area-universal fat-tree

I

li:

Figure 6: An area-universal fat-tree. 1
is vr2-. the average growth rate in a volume-universal fat-tree is r4.

In practice, of course, no mathematical rule governs interconnect technology.
Most networks that have been proposed for parallel processing, such as meshes
and hypercubes, are inflexible when it comes to adapting their topologies U
to the arbitrary bandwidths provided by packaging technology. The growth
in channel bandwidth of a fat-tree, however, is not constrained to follow a
prescribed mathematical formula. The channels of a fat-tree can be adapted to I
effectively utilize whatever bandwidths the technology can provide and which make
engineering sense in terms of cost and performance. Figure 8 shows one variant
of a fat-tree composed of two kinds of small switches: a three-connection switch 3

191
Figure 7: Any area-n network R can be efficiently simulated by an n-processor
area-universal fat-tree.

!E

II

Figure 8: A4 scalable fat-tree.

and a four-connection switch. By choosing one of these two kinds of switches
at each level of the fat-tree, the bandwidths of channels can be adjusted. If the

m three- connection switch is always selected, an ordinary complete binary tree results.

im If the four-connection switch is always selected, a butterfly network, which is a
relative of a hypercube, results. By suitably mixing these two kinds of switches,m a fat-tree that falls between these two extremes can be constructed that closely

m matches the the bandwidths provided by the interconnect technology.

The notion of locality exploited by fat-trees is but one of three such notions
that arise in the engineering of a parallel computer. The most basic notion of
locality is exemplified by wire delay and measured in distance. Communication

m is speed-of-light lin-ited. If this notion of locality dominates, the nearest- neighbor

communication provided by a three-dimensional mesh is the best one can hope.
For many systems, however, wire delay is dominated by the time it takes for logic

If circuits to compute their functions. The second notion of locality is exemplified
m *by levels of logic circuits and measured in gate delays. Communication* time is

essentially limited by the number of switches a message passes through. From this
point of view, structures with small diameters, such as hypercubes, seem ideal.
In a routing network, however, a heavy load of messages can cause congestion,
and the time it takes to resolve this congestion can dominate both wire and gate

delays. Congestio n is especially likely to occur in networks that make efficient use of
packaging technology. The last notion of locality is exemplified by the congestion of

mmessages leaving a subsystem and measured by load factor. From this standpoint,

Im m mm m m m m n mmmmmmm

fat-trees offer provably good performance by a general-purpose network that can be
packaged efficiently. Recent work [17] has shown that efficient parallel algorithms
can be designed for this kind of network, as well.

Whatever the point of view, however, all three notions of locality must guide the
engineering and programming of very large machines. There are problems in the
sciences that cry out for massive amounts of computation, most of which exhibit
locality naturally: problems in astronomy, such as galaxy simulation; problems
in biology, such as the combinatorics of DNA sequencing; problems in economics. 5
such as market prediction; problems in aerospace, such as fluid-flow simulation;
problems in earth, atmospheric, and ocean sciences, such as earthquake and weather
prediction. To address these problems effectively, very large parallel computers i
must be constructed. Some of these computers may even be "building sized." To
construct and program such large machines, however, locality must be exploited.,
and computer engineers must come to grips with the lessons of VLSI theory.

Acknowledgments 1
My research is supported in part by the Defense Advanced Research Projects

Agency under Contract N00014-87-K-825 and in part by an NSF Presidential Young
Investigator Award with matching funds provided by IBM Corporation, AT&T Bell
Laboratories, and Xerox Corporation. I am grateful to these institutions for their
continuing support.

References 3
[1] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout

problems. Journal of Computer and System Sciences, 28(2):300-343, 1984. 3
[2] S. N. Bhatt and C. E. Leiserson. How to assemble tree machines. Advances in

Computing Research, 2:95-i 14, 1984. I
[3] S. N. Bhatt and C. E. Leiserson. Minimizing the longest edge in a VLSI layout.

1981. Unpublished memorandum, MIT Laboratory for Computer Science.
[4] D. Dolev, F. T. Leighton, and H. Trickey. Planar embedding of planar graphs.

Advances in Computing Research, 2:147-161, 1984.

[5] R. I. Greenberg and C. E. Leiserson. A compact layout for the three-
dimensional tree of meshes. Applied Mathematics Letters, 1(2):171-176, 1988.

[5] R. 1. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. In 26th
.Annual lEEESymposium on Foundations of Computer Science, pages 241-249,
1985.

[7] J. W. Greene and A. El Gamal. Configuration of VLSI arrays in the presence
of defects. Journal of the ACM, 31(4):694-717, 1984.

[8] H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI). In I. S. Duff
and G. W. Stewart, editors, Sparse Matrix Proceedings 1978, pages 256-282,
SIAM, 1979.

[9] F. T. Leighton. A layout strategy for VLSI which is provably good. In 14th
Annual ACM Symposium on Theory of Computing, pages 85-98, 1982.

[10] F. T. Leighton and C. E. Leiserson. A survey of algorithms for integrating
wafer-scale systolic arrays. In IFIP Conference on Wafer-Scale Integration,
pages 177-195, 1986.

[11] F. T. Leighton and C. E. Leiserson. Wafer-scale integration of systolic arrays.
IEEE Transactions on Computers, C-34(5):448-461, 19S5.

[12] F. T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms.
In 29th Annual IEEE Symposium on Foundations of Computer Science,
pages 256-271, 1988.

[13] F. T. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts. SIAM
Journal on Computing, 15(3):793-813, 1986.

[14] C. E. Leiserson. Area-efficient graph layouts for VLSI. In 21st Annual IEEE
Symposium on Foundations of Computer Science, pages 199-214, 19S0.

[15] C. E. Leiserson. Area-Efficient VLSI Computation. A CM Doctoral Dissertation
Award Series, MIT Press, Cambridge, Massachusetts, 1983.

[16] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient super-
computing. IEEE Transactions on Computers, C-34(10):892-901, 1985.

117] C. E. Leiserson and B. M. Maggs. Communication-efficient parallel algorithms
for distributed random-access machines. Algorithmica, 3:53-77, 19S8.

(18] M. S. Paterson, W. L. Ruzzo, and L. Snyder. Bounds on minimax edge length
for complete binary trees. In 13th Annual ACM Symposium on Theory of
Computing, pages 293-299, 1981.

(19] A. L. Rosenberg. The Diogenes approach to testable fault-tolerant networks
of processors. technical memorandum CS-1982-6.1, Department of Computer
Science, Duke University, 1982.

[20] A. L. Rosenberg. Three-dimensional integrated circuitry. In H. T. Kung,
R. Sproull, and G. L. Steele Jr., editors, VLSI Systems and Computations,
pages 69-79, Computer Science Press, 1961.

[21] W. L. Ruzzo and L. Snyder. Minimum edge length planar embeddings of trees.
In H. T. Kung, R. Sproull, and G. L. Steele Jr., editors, VLSI Systems and
Computations, pages 119-123, Computer Science Press, 1981.

[22] C. D. Thompson. Area-time complexity for VLSI. In Caltech Conference on
Very Large Scale Integreation, pages 495-508, 1979.

[23] L. G. Valiant. A scheme for fast parallel computation. SIAM Journal on
Computing, 11(2):350-361, 1982.

[24] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions
on Computers, C-30(2):135-140. 1981.

II

-Ii

MECHANISMS FOR CONCURRENT
COMPUTING

William J. Daily

Artificial Intelligence Laboratory and
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT 1.2 Resource Management

Concurrent computing is fundamentally different than At the operating system level, a key problem is to develop
sequential computing. Task size is orders of magnitude resource management techniques suitable for concurrent
smaller making synchronization and scheduling major con- systems.. In a concurrent system, communication band-
cerns, the critical resources are communication and mem- width and memory capacity are the limiting resources;
ory, and programs distribute tasks rather than looping, processor cycles are almost free. This situation is the
Conventional hardware and operating system mechanisms opposite of the sequential case where processor cycles
are highly evolved for sequential computing and are not are considered the critical resource and communication is
appropriate for concurrent systems. This position paper not a consideration. To complicate the situation the re-
examines the mechanisms required by concurrent systems sources are physically distributed. Objects and processes
and the structure of a system incorporating these mech- must be placed in a manner that balances memory and
anisms. processor use across the machine and reduces communi-

I FUNDAMENTAL PROBLEMS cation. The .JOSS operating system (14] 15] is designed
to satisfy these unconventional requirements.

1.1 Primitive Mechanisms Methods must also be developed to regulate concurrency.
Many programs have too much parallelism and thus gen-

A fundamental hardware problem is to identify a set of crate more tasks than can be accommodated in the avail-
primitive mechanisms that efficiently support a broad able memory. To avoid the resulting deadlock, the sys-
range of concurrent execution models. Sequential ma- tem must regulate programs allowing them to generate
chines have evolved st,--ks for memory allocation, pag- sufficient concurrency to make use of all available pro-
ing for memory management, and program counters for cessors, but reverting to more sequential execution be-
instruction sequencing. Concurrent machines have very fore exhausting memory. Examples of regulation include
different demands in each of these areas; the sequential controlled unrolling of loops [2] and adaptive (FIFO vs
mechanisms are no longer appropriate. However, no con- LIFO) scheduling (101. t
current mechanisms have yet evolved to take their places.
Today's concurrent computers either interpret their ex- To make efficient use of the communication resources,
ecution model using sequential mechanisms or are hard- memory and tasks must be allocated in a manner that ex-
wired for a single execution model. ploits locality. Placing objects near each other to improve
The message-driven processor (MDP) [4] [6] is designed locality is often at odds with the need to distribute ob-
to evaluate concurrent execution mechanisms for com- jects for load balancing. Also there are some cases where
munication, synchronization, and naming. A SEND in- communication bandwidth can be increased by spread-
struction and hardware message reception and buffering ing out a computation to make more channels available.
allow efficient communication of short messages across a For static computations min-cut placement techniques
high-speed network (7. Synchrouization is supported by similar to those used to place electronic components [12]
a dispatch mechanism that creates a new process to han- work well. Dynamic computations rely heavily on heuris-
die a message in a single clock cycle. A general purpose tics (e.g., placing an object near the object that created
translation mechanism supports naming. These mech- it) supplemented by reactive load balancing.
anisms provide the primitive support required by many 1.3 Overhead
concurrent models of computation including dataflow [9],
actors(lj, and communicating processes [11]. To make use of a computer with thousands of processors,

I

a program must be decomposed into many small tasks. A fine-grain processing node has two major advantages: I
Each task consists of only a few instructions. In con- density and memory bandwidth. Several hundred single-
ventional systems, however, the overhead of scheduling, chip nodes can be packaged on a single- printed circuit
synchronization, and communication is many hundreds board permitting us to exploit hundreds of times the con-
of instructions per task. This overhead restricts conven- currency of machines with board-sized nodes. With on- I
tional multicomputers to operating at a very coarse grain chip memory we can read an entire row of memory (128 or

size - thousands of instructions per task. Concurrency is 256 bits) in a single cycle without incurring the delay of
reduced because there are fewer large tasks. Also, the re- several chip crossings. This high memory bandwidth a-
source management problems become harder as resources lows the memory to simultaneously buffer messages from U
are allocated in larger chunks. a high bandwidth network and provide the processor with

instructions and data.

Overhead can be reduced to just a few instructions per Fine grain machines are area efficient. Area efficiency is
task. The JOSS operating system, using the primitive given by CA = AITIIANTN (where A is the area of i pro- I
mechanisms provided by the MDP, can create, suspend, cessors, T, is execution time on i processors and N is the

resume, or destroy a task in fewer than ten instructions number of processors). Many researchers have measured
1151. This efficient management of fine-grain tasks is their machines effectiveness in terms of node efficiency,
achieved without sacrificing protection. Each task ex- eN = TI/NTN Propoients of coarse-grain machines ar-
ecutes in its own naming environment. gue that. a machine constructed from several thousand

2 CONCURRENT COMPUTER single-chip nodes would be inefficient because many of
ORGANIZATION the processing nodes will be idle. N is large, hence eN

is small. A user, however, is not concerned with N, but
To make the most efficient use of projected VLSI technol- rather with machine cost, Ai, and how long it takes to
ogy, general purpose concurrent computers will be con- solve a problem, T. Fine-grain machines have a very high
structed from a number of fine-grain processing nodes (51 CA because they are able to exploit more concurrency in
connected by a low-latency, wire-efficient interconnection a smaller area.
network [31.
2.1 Fine-Grain Processing Nodes 2.2 Wire-Efficient Communication Networks

The grain size of a machine refers to the physical size VLSI systems are wire limited. The cost of these systems
and the amount of memory in one processing node. A is predominantly that of connecting devices, and the per-
coarse-grain processing node requires hundreds of chips formance is limited by the delay of these interconnections.
(several boards) and has - 107 bytes of memory while Thus, an interconnection network must make efficient use
fine-grain node fits on a single chip and has ' 0 bytes f of tht; a w2..LX. ,ire. The topology of the network must
memory. Fine-grain nodes cost less and have less memory map into the three physical dimensions so that messages
than coarse-grain node!. however, because so little silicon are not required to double back on themselves, and in a
area is required to bu. a fast processor, they need not way that allows messages to use all of the available band-
have slower processors than coarse-grain nodes. width along their path. Also, the topology and routing

algorithm must be simple so the network switches will be
VLSI technology makes it possible to build small, pow- sufficiently fast to avoid leaving the wires idle while mak-
erful processing elements. A IM-bit DRAM chip has an ing routing decisions. Our recent findings suggest that
area of 256MA2 (A is half the minimum line width [13].). low-dimensional k-ary n-cube interconnection networks
In the same area we can build a single chip processing 13] are capable of providing the performance required by
node containing: fine-grain concurrent architectures.

A 32-bit processor 16MA2

A floating-point unit 32MA2

A communication controller 8MA2 3 TRANSITION TO MAINSTREAM
512Kbits RAM 128MA2 CONCURRENT COMPUTING

Such a single-chip processing node would have the same Select areas of mainstream computing will switch to con-
processing power as a board-sized node but significantly current computers when (1) concurrent software has ma-
less memory per node. The memory capacity of the en- tured to the point that it can support a large evolving I
tire machine is comparable to that of a coarse-grained application and (2) the performance advantage of these
machine. We refer to a machine built from these nodes machines is sufficient to justify an investment in new soft-
as a jellybean machine as it is built with commodity part ware. Concurrent machines are appropriate for applica-,
(jellybean) technology 18]. tions that are (1) limited by CPU performance (e.g., sci-

I

entific computing and signal processing) and (2) limited (13] Mead, Carver A. and Conway, Lynn A., In-
by memory system bandwidth (e.g., transaction process- troduction to VLSI Systems, Addison-Wesley,
ing). It is also expected that the availability of these Reading, Mass., 1980.
machines will create new applications that were not pre-viously possible. 1141 Totty, B.K., An Operatiny Environment for the

Jellybean Machine, MIT AI-Memo, 1988.

REFERENCES [15] Totty, B.K., and Dally, W.J., "JOSS: The Jelly-

References bean Operating System Software," to appear.

(1] Agha, Gul A., Actors: A Model of Concur-
rent Computation in Distributed Systems, MIT
Press, Cambridge, MA, 1986.

[2] Arvind, and Culler, D., "Managing Resources
in a Parallel Machine", Massachusetts Institute
of Technology Laboratory for Computer Science
CSG Memo 257, 1985.

[3] Daily, William J. "Wire Efficient VLSI Multi-
processor Communication Networks," Proceed-
ings Stanford Conference on Advanced Research
in VLSI, Paul Losleben, Ed., MIT Press, Cam-
bridge, MA, March 1987, pp. 391-415.

[4] Daily, W.J. et.al, "Architecture of a Message-
Driven Processor," Proc. 14th ACM/IEEE
Symposium On Computer Architecture, 1987,
pp. 189-196.

15] Daily, W.J., "Fine-Grain Concurrent Comput-
ers", Proc. 3 d Symposium on Hypercube Con-
current Computers and Applications, 1988.

(61 Dally, W.J. et.al, Message Driven Processor Ar-
chztecture, Version 11, MIT VLSI Memo, 1988.

[71 Dally, W.J., "Performance Analysis of k-ary n-
cube Interconnection Networks," IEEE Trans-
actzons on Computers, To appear.

[8] Dally, W.J., "The J-Machine", to appear.

[9] Dennis, Jack B., "Data Flow Supercomputers,"
IEEE Computer, Vol. 13, No. 11, Nov. 1980, pp.
48-56.

[10] Halstead, R., "Parallel Symbolic Computa-
tion," IEEE Computer, Vol. 19, No. 8, Aug.
1986, pp. 35-43.

[11] Hoare, C.A.R., "Communicating Sequential
Processes," Comm. ACM, Vol. 21, No. 8, Au-
gust 1978, pp. 666-677.

(12] Kernighan B.W. and Lin, S., "An Efficient
Heuristic Procedure for Partitioning Graphs,"
Bell System Technical Journal, Vol. 49, No. 2,
Feb. 1970, pp. 291-307.

Experience with CST: Programming and Implementation 1

Waldemar Horwat, Andrew A. Chien and William J. Dally
Artificial Intelligence Laboratory .ad

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

CST is a programming language based on Smalltalk-80 that supports concurrency using locks, asynchronous messages,
and distributed objects. In this paper, we describe CST: the language and its implementation. Example programs
and initial programming experience with CST is described. An implementation of CST generates native code for the
J-machine, a fine-grained concurrent computer. Some novel compiler optimizations developed in conjunction with
that implementation are also described.

Introduction

This paper describes CST, an object-oriented concurrent programming language based on Smalltalk-80 [7] and an
implementation of that language. CST adds three extensions to sequential Smalltalk. First, messages are asyn-
chronous. Several messages can be sent concurrently without waiting for a reply. Second, several methods may
access an object concurrently; locks are provided for concurrency control. Finally, CST allows the programmer
to describe distributed objects: objects with a single name but distributed state. They can be used to construct
abstractions for concurrency.

CST is being developed as part of the J-Machine project at MIT [4, 3]. The J-Machine is a fine-grain concurrent
computer. The primary building block in the J-machine is the afssage-Driven Processor (MDP). It efficiently
executes tasks with a grain size of 10 instructions and supports a global virtual address space. This machine requires
a programming system that allows programmers to concisely describe programs with method-level concurrency and
that facilitates the development of abstractions for concurrency.

Object-oriented programming meets the first of these goals by introducing a discipline into message passing. Each
expression implies a message send. Each message invokes a new process. Each receive is implicit. The global address
space of object identifiers eliminates the need to refer to node numbers and process IDs. The programmer does not
have to insert send and receive statements into the program, keep track of process ID, and perform bookkeeping to
determine which objects are local and which are remote.

For example, a CST program 2 that counts the number of leaves in a binary tree using double recursion is shown
in Figure 1. Nowhere in the program does the programmer explicitly specify a send or receive, and no node num-
bers or process IDs are mentioned. Yet, as shown in Figure 13 the program exhibits a great deal of concurrency.
Making message-passing implicit in the language simplifies programming and makes it easier to describe fine-grain
concurrency.

CST facilitates the construction of concurrency abstractions by providing distributed objects: objects with a single
name whose state is distributed across the nodes of a concurrent computer. The one-to-many naming of distributed
objects along with their ability to process many messages simultaneously allows them to efficiently connect together

t The restash described in this paper was supported in part by the Defense Advanced Research Projects Agency and mmitored
by the Office of Naval Research under contracts N00014-88K-0738, N00014-97K-0825, and N00014-M-K-0124, in part by a National
Science Foundation Presidential Young Investigator Award with matching funds from General Electric Corporation, an Analog Devices
Fellowship, and an ONR Fellowship.2This program is in prefiz CST, a dialect that has a syntax resembling LISP. lnfiz CST [$I hase & sy-,ax cloer to that of Srmalltabi-80.

3The concurrency profiles presented in this paper axe produced by an Icode level simnulation of CST programns.

i IsH

I

(class node (object) left right tree-nod.?) 3
(method node count-elesents 0 0 - "

(if tree-node? (4 (count-elements left) . 3
(coumt-eleents right)) /-\

L ' .. .

Figure 1: A CST program that calculates the number of leaves in a tree using double recursion. Its concurency
profile (active tasks in each message interval) is shown to the right. 3
large numbers of objects. Distributing the name of a single distributed queue to sets of producer and consumer
objects, for example, connects many producers to many consumers without a bottleneck.

The Optimist compiler [8] compiles Concurrent Smailtalk to the assembly language of the Message-Driven Processor
(MDP) [9]. It includes many standard optimizations such as register variable assignment, dataflow analysis, copy
propagation, and dead code elimination [2, 13] that are used in compilers for conventional processors. Due to the fine-
grained parallel nature of the J-machine, compiling for the MDP is unlike compiling for most conventional processors
in a few important aspects. For instance, loops are not important 4 , while minimizing code size, tail forwarding
methods, and efficiently and seamlessly handling parallelism are extremely important.

The development of Concurrent Smaltalk was motivated by dissatisfaction with process-based concurrent program- 3
ming using sends and receives [11]. Many of the ideas have been borrowed from actor languages [1]. Another language
named Concurrent Smailtalk has been developed at Keio University in Japan [14]. This language also allows message
sending to be asynchronous, but does not include the ability to describe distributed objects.

Concurrent Smalltalk 3
Top-Level Expressions

A CST program consists of a number of top-level expressions. Top level forms include declarations of program
and data as well as executable expressions. Linking of programs (the resolution from selectors to methods) is done
dynamically. 3
<top-ezp> :- (Global <global-variable> <value>) I

(Constant constant-name> (value>) I
(Class <class-name> (<superclases) <instance-vars>) I
(Nethod <clss-nam,) <method-namae)

(formals>) ((locals>)
<eess ions)) I

<eqeseioA)

Globals and Constants Global. and constant declarations define names in the environment. These names are 3
visible in all programs, unless shadowed by a instance, argument, or local variable name. The global declaration
simply defines the name. Its value remains unbound. The constant declaration defines the name and binds the name
to the specified value. 3
Classes Objects are defined by specifying classes. Objects of a particular class have the same instance variables
and understand the same messages. A class may inherit variables and methods from one or more superclasses. For 3

"In fact, the carnt veion of Cocurrem Smalitai does not even have loops.

2

I

example:

(class node (object) left right tree-node?)

I defines a class, node, that inherits the properties of class ob e t and adds three instance variables. This means
that methods for the class node can access all the instance variables of class object as well as those defined in their
own class definition. Methods defined for class object are also inherited. Of course, this inheritance is transitive,
so node actually inherits from a series of classes up through the top of the clas hierarchy. Instance variables in the
class definition may hide (shadow) those defined in the superclasses if they have the same name. The same kind of
shadowing is allowed for selectors (method names).

Methods The behavior of a class of objects is defined in terms of the messages they understand. For each message,
a method is executed. That execution may send additional messages, modify the object state, modify the object
behavior, and create new objects. Methods consist of a header and a body. The header specifies class, selector,
arguments, and locals. The body consists of one or more expressions. For example:

(method node count-elements) 0
(it tree-node? (+ (count-elements left)

(count-elements right))
1))

defines a method for class node with selector count-elements. The two empty lists indicate that there are no explicit
arguments and no local variables. If present, the keyword reply sends the result of the following expression back
to the sender of the count-eleaments message. In this case, there is no reply keyword, so the method replies with
the value of the last expression. If the programmer wishes to suppress the reply, he can use the (exit) form which
causes the method to terminate without a reply.

Messages are sent implicitly. Every expression conceptually involves sending a message to an object. Of course,
commonly occurring special cases, like adding two local integers, will be optimized to eliminate the send. For
example, (count-elements left), sends the message count-elements to leoft. (+ x y) sends the message + with
argument x to object y. If both z and y are local integers, this operation can be optimized as an add instruction.

Each expression consists of a selector, a receiver, and zero or more arguments. Identifiers must be one of: constant,
global variable, argument, local variable, or instance variable. Subexpressions may be executed concurrently and are3 sequenced only by data dependence. For example, in the following expression from the program in Figure 1

(+ (count-elements left) (count-elaents right))

the two count-elements messages will be sent concurrently and the + message will be sent when both replies have
been received. The only way to serialize subexpression evaluation is to assign intermediate results to local variables.

i A complete list of CST expressions is shown below:

<eGpK> :0 <ezxp>
<eZp> :"

(name> I
(<selector> <receiver-ezp> <argumont-exp>e) I
(send <selector-exp> <receiver-erp> <argument-eo>e) I
(valIue <eGIF>) I

(set <name> <exp>) I

(coot <name> <ezp>) I
(sag <node> <selector> <receiver> <actuals>) I
(forward <continuation> <selector> <receiver> <arg>) I
(reply <exp>) I

*3

(block (<foral>) (locals>) <ezp>) I n
(if <(ip) ">ip) (ezp>) I
(begin (ezps>) I 3
(z2t) 1

An Example CST Program 3
We now introduce a slightly more complicated version of the program shown in Figure 1. Rather than simply counting
the leaves on a tree, we compute the lengths of all the lists linked to the tree and sums those lengths together. _

(class nods (object) left right) 3
(method node cout-list-elements 0) --.

(+ (cout-list-elements left) , - .S a-,.,.a

(count-list-lements right)))F

(class pair (object) car cel)

(method pair count-list-elements () 0
(length right 0))I

(method pair length (n) 0
(if (eq cdr 'nil) (+ 1 n)

(length cdr (+ in)))) ' - , ,- OM

Figure 2: A CST program that computes sum of list lengths and its execution profile

The node class definition is the same as it was in Figure 1. left and right are the children of the current node
in a binary tree. The right of each leaf node points to a linked list of pairs. The method cout-list-elements
recursively counts the lists lengths by doing so for the right subtree and the left subtree concurrently. At the bottom
of the tree, the late binding SEND operation causes the count-list-el..ents method for pairs to be invoked. This
method computes the length of each list using the tail recursive method length. 3

Distributed Objects

CST programs exhibit parallelism between objects, that is many objects may be actively processing messages si-
nultaneously. However, ordinary objects can only receive one maesage at a time. CST relaxes this restriction with
Distributed Objects (DO@). Distributed objects are made up of multiple representatives (constituent objects) that
can each accept messages independently. The distributed object has a name (Distributed object ID or DID) and all
other objects send messages to this name when they wish to use the DO.

Messages sent to the DO are received by one and only one constituent object (CO). Which constituent receives
the message is left unspecified in the language. A clever implementation might send the messages to the closest
constituent whereas a simpler implementation might send the messages to a random constituent. The state of a
distributed object is typically distributed over the constituents. This means that responding to an external request
often requires the passing of messages amongst the constituents before replying. No locking is performed on the
distributed object as a whole. This means that the programmer must ensure the consistency of the distributed
object.

4

mrnlmii msm ril mniu• mUm

Support for Distributed Objects

CST includes two constructs to support distributed objects. For DO creation, we add an argument for the now selector
- the number of constituents desired in this DO. In order to pass messages within the object, each constituent object
must be able to address each of the other constituents. This is implemented with the special selector co. Each
distributed object can use this selector, the special instance variable group (a reference to the DO), and an index
to address any constituent. For example, (co group 5) refers to the 5th constituent of a distributed object. Each
constituent also has access to its own index and the number of constituents in the entire distributed object. Thus a
description of a distributed object might look something like the example shown in Figure 3.

; istributed Array Abstraction.
The constituents are spread throughout the macine.

I; The array state is allocated Into We)i sized chunks an tUe conslituents.

(ciass distarray (distobj) ne-elta chunk-size slt-array)

Give" an uninitialized 00. init makes each one an array,
; tlls1 it how many lit It has, and hw many elements

II are I the entire array.

(method distarray Init (err-size) C)
(0O-i sl (block (ConstIt slt) ()

(ca-init (Co (group conatit) (ayIndsx conatit)) lit)
(reply eanatit))

arr-*ize))

helper for Init

(Method ditarray co-Init (@Its) ()
(begin (sLt chUnk-sie l lits (- I MaXindMx)))

(set mr-alt *Its)
(set alt-array (new array chunk-size))

Tree recursive apply, with one argi mnt

(method distarray do-I (ablock ar-I)l () (Ido-I (co group 0) ablock aigi))
(method gltarray la0-I (&biock arl) (a b linden rindox)

(set lindex (lindex seIf))
(Sat rlndex (rindax salf))
(east a (it (" lIndex maxlndox) (1id-1 (Co group lIIndex) abl ck all)

'U))
(cast b (if C(- tnex naxlndex) (140-1 (cO group rindex) ablock arI)

(touch a b)
(reply (value ablock al argli))
(exit))

*.Select array element at Inde"

(mathod distarray at (index) (selector)
(if (or ((Index (a chunk-size yindlex))

0. Index (chunk-SIze (* MyIndex I))))
(1gin (Sot selector (truncate (Index chunk-size)))(forward reg usat at (co p "latter) Inde)

(eNIL))
(at alt-array (mod Index chunk-sze))))

sat a-ray element at index to value

(method distarray at.put (index value) (selector)
(if (ar ((Index (a Chunk-size lyindex))

()- index (0 Chunk-size (# myindes 1))))
(begin (Set 9olector (truncate (I Index chunk-size)))

(forward reauestr at.put (Co gou" selector) ie,, value)
(eit))

(st.it Olt-array (mad Index chunk-sll) value)))
3;

to make a distarray of 254 constituents and 1024 elements do
3;

I (fit (new diatarray 250) 1024)
II

Figure 3: A Distributed Array Example

In the example of the distributed array, we would create a usable array with two steps. First we construct the.
distributed object using the new form. The example in Figure 3 creates a distributed object with 256 constituents.
After the DO is created, we must initialize in a way that is appropriate for the distributed array. We do so by sending
it an imit message (also defined in Figure 3). This initialization sets each constituent up with an private array of the

5

appropriate number of elements. For example, if we wanted a distarray of 512 elements, in this case each constituent I
would have a private array of two elements. This initialization is done in a tree recursive fashion and therefore takes
O(Ig(n)) time.

The mapping of the distarray elements onto the private arrays is done by the at and at.put methods. Each
constituent is responsible for a contiguous range of the distarray elements. Any requests received by a constituent
are first checked to see if they are within the local CO's jurisdiction. If they are not, they are forwarded to the
appropriate CO. If they are, the request is handled locally. This is a particularly simple example because each I
constituent is wholly responsible for his subrange and need not negotiate with other constituents before modifying

his local state.

Distributed objects are of great utility in building large objects on a fine grain machines. In the J-machine, we restrict 3
ordinary objects to fit within the memory of single node, thus restricting object size. With distributed objects, we
only require that a constituent of the DO fit on a single node. Some useful examples for distributed objects are
dictionaries, distributed arrays, sets, queues, and priority queues.

Experience with CST

We have written a large number of Concurrent Smalltalk programs and executed them on our Icode simulator. These
programs include various data structures, distributed arrays, sets, rings, B-trees, grids, and matrices. They also
include several application kernels: N-body interaction and charged particle transport (Particle-in-cell algorithm). I
To date, the programs studied range from toys to applications of over 1000 lines. It is clear from our experience
that CST programs exhibit large amounts or parallelism. However, we are just beginning to exploit the potential of
Distributed Objects as building blocks for concurrent programs. We will continue to study data structures, algorithms I
and full-blown applications in our continuing evaluation of Concurrent Smalltalk.

The Optimist Compiler for CST

Goals I
The main goal of the Optimist compiler is to produce Concurrent Smaltalk code that is as small as possible without
sacrificing speed. In almost all cases optimizations that reduce space also reduce speed, but there are a few cases in
which they conflict; in those cases the decisions were made in favor of optimizing space. Compilation speed was not
a major goal of the compiler project; simplicity and flexibility were considered more important. Still, the compiler
does achieve reasonable compilation speed, taking between one and fifteen seconds to compile most methods on a
2-megabyte Macintosh' II using Coral Software's Allegro Common Lisp.

Organization

The Optimist compiler is comprised of four phases, as shown in Figure 4. The Concurrent Smalltalk Front End can
be replaced by other front ends to compile other languages for the MDP. Also, the Icode can be extracted from two I
places in the compilation process and either compiled onto different hardware or run on an Icode simulator.

The source code is converted by the Front End into an intermediate language called Icode. The Icode is at a
somewhat higher level than the triples or quadruples codes that most compilers use, in that it specifies units such I
as entire procedure calls in single instructions. The Icode also allows for the possibility of having more than one
source language compile into MDP assembly language code or having the same source language compile into several
assembly languages. Figure 5 shows the length method in its Icode form.

5 Macintosh is & trademark o(Apple Computer, Inc.

6!

rT S Code

Fecord Endd

I.a. mrhm

f _ oreEd

3 Qua.AmnI- Cod.

MDPRN Am"~o.

Figure 4: Compiler Orgaiaion.

It

(cSUnD (TDW' 0) (J'Th0D EQ) (IVAR 1) (ComsT" IL.))

(cSUDD ('TRW 1) O]ETIOD .) (CO11S? 1) (ALRn 0))

(LLzE!. 0)
I (cSUD (T P 2) (lTNOD) (CO11S? 1) (AltO 0))

(cSUID (rDg 1) (J 'TROD LUI) (IYAR 1) (TIW 2))I(tI% 1))

I
Figure 5: Icode for the length Method: The Icode output by the Front End iz 8 literal translation of the source
code with few optimizations. At this point all method calls, including primitives, are compiled as CSEND.I
The Statement Analyzr and Optimizer processe and optimizes the Icode generatd by the Front End. It perform

all of the compiler's optimizations that are relevant at the Icode level of abstraction. Internally it works with Icode

in the form of a directed control-flow graph. These optirniations include dead code elimination, move elimination,
datahlow trasformation, constant folding, tail forwarding, and merging of identical statements on both sides of

I paths of a conditional. The optimizations are repeatedy attempted until none of them can improve the code.

The Instruction Generator compiles each Icode statement to a number of quasi-MDP instructions and outputs the
MDP code in the form of a directed control-flow graph. At the same time, the Instruction Generator assigns variables

I to either registers or memory locations ad performs statement-specific optimizations on Iecodes.

The Assembly Code Generator insert branches into the directed graph of quasi-MDP instructions created by the
Instruction Generator ad performs several peep-hole optimizations. The important optimizations include shifting

I instructions wherever poasible to align DC (Load Constant) instructions to word boundaries (all other instruc-

tions need only be aligned at half-word boundaries) ad combining SEND and SENDE instructions to SEND2 and
SEND2E. The Assembly Code Generator replaces short branches by long ones where necesary; such replacements

I ~ are complicated by the fact that long branches alter the value of MDP's register RO0. The Assembly Code Generator
outputs a file of ssembly laguage statements which can be read, ambled, ad executed by our MDP simulator

I7

UmrilyCd

-I
MDPSim [0]. Figure 6 contains the assembly code output for the sample method length.

MODULE PAIR.__LENGTH
DC MSG:LoadCode+18
DC (Cl as.PATq}. {Met.hodLENQTH! }
MOVE [2.A3],RO ; 0

ILATE RO,A2,XLATE.OBJ ; 0.5
MOVE 1.R3 ; 1
ADD R3, [3, A31.R2 ; 1.5

MOVE [3,123,11 ; 2
B3311L 11.1LO01 ; 2.6
MOVE [4.A3.R1 ; 3I
BIlL R11..002 ; 3.5
DC MSG:ReplyConst+4 ; 4
VTAG R1,1,113 ; 6

LSH R3,-16,R.3 ; 5.5

SEND2 R3,RO ; 6
SEND R1 ; 6.5
SEID2E [5,A33,R2 ; 7
BR 'L002 ; 7.5

L001: MlOVE [3,A2] ,RO a

CALL Send. Node.r ; 8.6

DC NSG:SendConst+7 ; 9
SEID2 R1 RO ; 10
DC {MethodLENGTH} ; 11
SEND RO ;12
SEND2 [3.A2].R2 ; 12.5
SEND [4,A33 ; 13
SEIDE [5,131 ; 13.5

L002: SUSPEND ; 14 3
Figure 6: Final Output of the Compiler: This is the MDP assembly code into which the length method compiles. If

the optimizations were turned off, the code size would have been 32 words, more than twice the size of the optimized I
code.

I
Optimizations

Tail Forwarder The tail forwarder performs the message-passing equivalent of tail recursion. It is often the case I
that the value returned by a Concurrent Smalltalk method is the value returned by the last statement of that method,
and that statement is often a method call. An example of this phenomenon is a recursive definition of the length
function in Figure 2.

If cdr is not equal to nil, the length method makes a recursive call and when that call returns, it immediately
returns that value as the result. There is, however, no fundamental reason why length should wait for the result
of the recursive call to length only to return it to the caller; on the contrary, it would be better if the recursive
length call returned its result to the initial caller. length optimized this way runs in constant space instead space
proportional to the list length. The Tail Forwarder performs this optimization by looking for a CSEND statement

whose value is returned by a REPLY statement immediately afterwards. Such a CSEND statement is modified to

inform the callee to return its result to this method's caller instead of this method.

Fork and Join Mergers These two optimizations, if they can be applied, often produce significant savings in the

output code size. They try to consolidate similar statements on both sides of forks (conditionals) and joins (places

83

I

where two paths of control flow merge) in the control-flow graph.

The Join Merger looks for similar statements immediately preceding each join in the control-flow graph. Here two
statements are considered to be similar if they are identical or if they are both CSENDs with identical targets and
the same number of arguments; the arguments themselves need not be the same. The Join Merger moves both
statements after the join; if the statements were not identical, MOVEs vre generated to copy any differing arguments
into temporaries before the join; the combined statement after the join will use the temporaries instead of the original
arguments. These MOVE& are usually later removed by the Move Eliminator. Although more than two paths of
control flow can join at the same place, the Join Merger only considers them pairwise; if more than two paths can
be merged, initially two will be merged, with the other ones considered in a later pass. The Fork Merger operates
analogously except that it also has to be sure not to affect the value of the condition determining which branch the
program will take.

The Join Merger occasionally merges two completely different method calls which happen to have the same number
of arguments, but which may even call different methods (the method selector is treated as an argument like any
other), a rather unexpected optimization indeed. In each branch just before the join, the resulting object code copies
the differing method arguments into the MDP's registers and stores the appropriate method selector in a register.
After the join is common code that sent the message given the method selector and arguments in the registers. Since
the code to send a message is long compared to the code to load values into registers, the optimization has a net
savings of five words (ten instructions) of code without significantly affecting the running time.

Move Eliminator For each MOVE statement from a local variable to another local variable, the Move Eliminator
attempts to merge the source and destination variables into one variable and then remove the MOVE statement.
Such a merge can be done suscessfully if the two variables are never simultaneously live at any point in the code.

The Move Eliminator complements the copy-propagation algorithm in the Optimist. Although both try to optimize
MOVE statements, each is able to handle cas that the other cannot. The copy propagation can handle constants,
while Figure 7 shows an example of MOVE statements that can be eliminated by the Move Eliminator but not bycopy propagation.

Figure 7: Move Eliminator Example: The Move Eliminator is able to remove the two MOVE statements (a-b) and
(at-c) in the above code (the arrows indicate possible flow of control paths). The copy propagation algorithm would
not detect the opportunity to remove these two MOVE statements because the value of a at the return statement is
neither a copy of b nor a copy of c. The above code does occur in many methods.

Variable Allocator A greedy algorithm is used to mign eligible variables to registers. The shortest-lived variables
with the most references are considered first. A graph coloring algorithm is used to assign the variables that did not
fit in the registers to context slots; thus, fewer context slots are used, saving valuable memory space.

I9!'g

Summary

In this paper, we have presented a new language, Concurrent Smalltalk, that is designed for concurrency. Specific
support for concurrency includes locks, distributed objects, and asynchonous message passing.

Distributed Objects represent a significant innovation in programming parallel machines. We refer to the constituents
of a distributed object with a single name, but the implementation of the object is with many constituents. This
different perspective allows easy use of distributed objects by outside programs while allowing the exploitation of

-internal concurrency.

We have described an implementation of a CST system. This programming environment includes a compiler, simu-
lator, and statistics collection package. This set of tools allows us to experiment with new constructs and implemen-
tation techniques for the language. Although many of the optimizations used by the Optimist compiler are generally
known, they have usually been applied to compilers for conventional processors. The issues involved in compiling
for the MDP are quite different from compiling for conventional processors. After examining the compiler's output,
it becomes apparent that the optimizations are essential to the successful use of Concurrent Smalltalk on the MDP.
The compiler's optimizations reduce the amount of code output by anywhere between 20% and 60% (or even more
in some cases) compared to output with all nonessential optimizations disabled. Such a reduction is very important I
on a processor with only 4096 words of primary memory.

There are many open issues relating to CST and similar programming systems. Key efficiency issues remain unre-
solved: how fine grain will the programs written in CST be and what is the run time overhead of CST programs?
There are also concerns about the expressive power of languages like CST - how easy is it to write programs in CST
and how useful are distributed objects?

References

(1] Agha, Gul A., Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge, MA, 1986. 1
[2] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. Compilers: Principles, Techniques, and Tools Addison-Wesley,

Reading, .i.A, 1986.
[3] Dally, W. J., "Fine-Grain Message-Passing Concurrent Computers,* these proceedings.

(4] Dally, William J. et.al., *Architecture of a Message-Driven Processor," Proceeding. of the 14"h ACM/IEEE Symposium
on Computer Architecture, June 1987, pp. 189-196.

[5] Daily, William J., A VLSI Architecture for Concurrent Data Structures, Kluwer, Boston, MA, 1987. I
(6] Halstead, Robert H., 'Parallel Symbolic Computation,* IEEE Computer, Vol. 19, No. 8, Aug. 1986, pp. 35-43.

[7] Goldberg, Adele and Robson, David, Smailtalk80, The Language and its Implementation, Addison Wesley, Reading
MA, 1984.

[8] Horwat, Waldemar, A Concurrent Smalltelk Compiler for the Message-Driven Processor, MIT AI Technical Report
1080, October 1988.

(9] Horwat, Waldemar and Totty, Brian. Message-Driven Proceuor Architecture, Version 10 MIT Concurrent VLSI Archi-
tecture Memo, March 1988.

[10] Horwat, Waldemar and Totty, Brian. Message-Driven Processor Simulator, Veraion 5.0 MIT Concurrent VLSI ArcL-
tecture Memo, December 1987.

(11] Su, Wen-King, Faucette, Reese, and Seitz, Charles L., C Programmer'. Guide to the Cosmic Cube, Technical Report
5203:TR:85, Dept. of Computer Science, California Institute of Technology, September 1985.

[12) Totty, Brian, 'An Operating System Kernel for the Jellybea Machine," MIT Concurrent VLSI Architecture Memo,
196T. E

(13] Wuif, William M., Johnsson, Richard K., Weinstock, Charles B., Hobbs, Steven 0., and Geschke, Charles, M. The
Design of an Optimizing Compiler. American Elsevier, New York, 1975.

(14] Yokote, Yasuhiko and Tokoro, Mario, "Concurrent Programming in ConcurrentSmalltalk," Object-Oriented Concurrent
Programming, Yonezawa and Tokoro eds., MIT Press, Cambridge, MA, 1987, pp. 129-158.

1I 10!

M'ASSACHUSETTS INSTITUTE OF TECHNOLOCY VLSI PUBLICATIONS

VLSI Memo No. 88-477

October 1988

CIRCUIT DESIGN CRITERIA FOR STABILITY IN A CLASS OF LATERAL
INHIBITION NEURAL NETWORKS

D. Standley and J. L. Wyatt, Jr.

Abstract

In the analog VLSI implementation of neural systems, it is sometimes convenient to build
lateral inhibition networks by using a locally connected on-chip resistive grid. A serious
problem of unwanted spontaneous oscillation often arises with these circuits and renders
them unusable in practice. This paper reports a design approach that guarantees such a
system will be stable, even though the values of designed elements in the resistive grid may
be imprecise and the location and values of parasitic elements may be unknown. The
method is based on a mathematical analysis using Tellegen's theorem and the Popov
criterion. The criteria are local in the sense that no overall analysis of the interconnected
system is required for their use, empirical in the sense that they involve only measurable
frequency response data on the individual cells, and robust in the sense that they are not
affected by unmodelled parasitic resistances and capacitances in the interconnect network.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

I

Acknowledgements I

To appear in Proceedings. IEEE Conference on Decision and Co +ro; Austin, TX,
December 7-9, 1988. This work was supported in part by the Defense Advanced Researchi
Projects Agency under contract number N00014-87-K-0825, and by the National Science
Foundation under contract number MIP-8814612.i

Author Informationi

Standley: Department of Electrical Engineering and Computer Science, Room 36-863,i
MIT, Cambridge, MA 02139, (617) 253-263 1.

Wyatt, Jr.: Department of Electrical Engineering and Computer Science, Room 36-864,
MIT, Cambridge, MA 02139, (617) 253-6718.i

Copyright O 1988 MIT. Memos in this series are for use inside MIT and are noti

considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except fori
government purposes, iR the paper acknowledges U. S. Government sponsorship. I

References to this work should be either to the published version, if any, or in the form
atpiaecommunication." For information about the ideas expressed herein, contact thei

author directly. For information about this series, contact Microsystems Researchi
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8.138. .

I

To appear in Proc. IEEE Conference on

Decision and Control; Austin, TX,

December 7-9, 1988.

Circuit Design Criteria For Stability In A Class Of Lateral Inhibition Neural

Networks

D. Standley and J.L. Wyatt, Jr.

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract r-------------

In the analog VLSI implementation of neural systems, Am *17 A *

it is sometimes convenient to build lateral inhibition net-
works by using a locally connected on-chip resistive grid. - I

A serious problem of unwanted spontaneous oscillation +

often arises with these circuits and renders them unus- I
able in practice. This paper reports a design approach I ldhtlight
that guarantees such a system will be stable, even though I -t similc
the values of designed elements in the resistive grid may I ce I lls
be imprecise and the location and values of parasitic el- I -

ements may be unknown. The method is based on a
mathematical analysis using Tellegen's theorem and the vW
Popov criterion. The criteria are local in the sense that no
ovrall analysis of the interconnected system is required Figure 1: This photoreceptor and signal processor cir-

for their use, empirical in the sense that they involve cuit, using two MOS amplifiers, realizes laLeral inhibition

only measurable frequency response data on the individ- by communicating with similar cells through a resistive

ual cells, and robust in the sense that they are not affected grid.

by unmodelled parasitic resistances and capacitances in
the interconnect network.

segmentation [4,5]. Networks of this type can be divided

I. Introduction into two classes: feedback systems and feedforward-only
systems. In the feedforward case cne set of amplifiers

The term "lateral inhibition" first arose in neurophys- imposes signal voltages or currents on the grid and an-

iology to describe a common form of neural circuitry in other set reads out the resulting response for subsequent

which the output of each neuron in some population is processing, while the same amplifiers both "write to" the

used to inhibit the response of each of its neighbors. Per- grid and "read from" it in a feedback arrangement. Feed-

haps the best understood example is the horizontal cell forward networks of this type are inherently stable, but

layer in the vertebrate retina, in which lateral inhibition feedback networks need not be.

simultaneously enhances intensity edges and acts as an A practical example is one of Carver Mead's retina
automatic gain control to extend the dynamic range of chips (3] that achieves edge enhancement by means of lat-
the retina as a whole [I]. The principle has been used eral inhibition through a resistive grid. Figure 1 shows a
in the design of artificial neural system algorithms by single cell in a continuous-time version of this chip, and
Kohonen [2] and others and in the electronic design of Fig. 2 illustrates the network of interconnected cells.
neural chips by Carver Mead et. al. [3,4]. Note that the voltage on the capacitor in any given cell

In the VLSI implementation of neural systems, it is is affected both by the local light intensity incident on

convenient to build lateral inhibition networks by using that cell and by the capacitor voltages on neighboring
a locally connected on-chip resistive grid. Linear resis- cells of identical design. Each cell drives its neighbors,
tors fabricated in, e.g., polysilicon, could yield a very which drive both their distant neighbors and the original

compact realization, and nonlinear resistive grids, made cell in turn. Thus the necessary ingredients for instabil-

from MOS transistors, have been found useful for image ity - active elements and signal feedback - are both

~Ii

I I

"" ! "Figure 3: Elementary model for an MOS amplifier.
These amplifiers have a relatively high output resistance,

Figure 2: Interconnection of cells through a hexagonal re- which is determined by a bias setting (not shown).

sistive grid. Cells are drawn as 2-terminal elements withthe power supply and signal output lines suppressed. The achieved in practice, suffice to guarantee robust stabil-

grid resistors will be nonlinear by design in many such ity of the lnea network model, and ii) an extension
circuits. of the analysis to the nonlinear domain that furthermore

rules out sustained large-signal oscillations under certain
present in this system. Experiment has shown that the conditions.
individua cells in this system are open-circuit stable and Note that the work reported here does not apply di-
remain stable when the output of amp # 2 is connected rectly to networks created by interconnecting neuron-like
to a voltage source through a resistor, but the intercon- elements, as conventionally described in the literature on
nected system oscillates so badly that the original desig artificial neural systems, through a resistive grid.Th

is ssetialyunuabl inprctie wth helatralinhbi "neurons" in, e.g., a Hopfield network [10] are unilateral
is ssetialy nusblein ratic wih te lterl ihib- -port elements in which the input and output are bothtio n p a t h s e n a b led [6]. S u c h os c illa tio n s c a n re ad ily o c c u rv o t g si n l . T e n p t o t a e u q e y a d i s a -in most resistive grid circuits with active elements and taeul detnes the otput voltage osucy a neuron

feedback, even when each individual cell is quite stable,. aeul eemnsteotptvlaeo uhanuo
Analysis of tihe conditions of instability by conventional model, but the output can only affect the input via the
methods appears hopeless, since the number of simulta- resistive grid. In contrast, the cells in our system are I-
neously active feedback loops is enormous. port electrical elements (temporarily ignoring the optical

This paper reports a practical design approach that input channel) in which the port voltage and port cur-
rigoousy garaneessuc a sste wil bestale.The rent are the two relevant signals, and each signal affects

work begins with the nav4 observation that tte system the other through the cell's internal dynamics (modelled
would be stable if we could design each individual cell as a Thevinin equivalent impedance) as well as through

so that, although internally active, it acts like a passive tegi' epne
system as seen from the resistive grid. The design goal1 .Th Li e r h oyin that case would be that each cell's output impedanceI.ThLierhoy
s h o u ld b e a po s itiv e -r e a l [7 ,8 , a n d 9 , p . 1 7 4] fu n c t io n .T h s w r w a m o i t e b y h e f l w n g i e r a a -Tis is sometimes possible in practice; we will show that ysis or wa moeotidb the itin ing . eor anntal
the original network in Fig. I satisfies this condition in approximatione tor the circut aditn c . o the celliwe
the absence of certain parasitic elements. Furthermore' it uprose ont the emntrmoelu shon itnc g3for the amli-wis a condition one can verify experimentally by frequency- fiesadslf the ircui odeposog winig. a fornthe cell-
response measurements. (ir npiythousoeevn ifrton) asithwn in g.lIt is obvious that a collection ofcels that appear pas- 4.

sive at their terminals will form a stable system when Stag towr4.luain h wthtteot u dinterconnected through a passive medium such as a re- Stra.is

sistive grid, and that the stability of such a system is ro-
bust to perturbations by passive parasitic elements in the
network. The contribution of this paper is to go beyond wihsdeter d bs settignoshwthat observation to provide i) a demonstration that the 0 + (1 + sRa

passivity or positive-real condition is much stronger than
we actually need and that weaker conditions, more easily which is positive-real.

I (w) such that 0 6(w) -90 and ILZ.(j)-8(jw)I <

900,n = 1,2, ... , N.

- An equivalent statement of this last condition is that

+ -- the Nyquist plot of each cell's output impedance for w >
+ Z (s) 0 never intersects the closed 2nd quadrant, and that no

I Itwo cells' output impedance phase angles can ever differ
I Amp W 2by as much as 180 o. If all the active cells are designedidentically and fabricated on the same chip, their phase

S " angles should track fairly closely in practice, and thus

this second condition is a natural one.

Figure 4: Simplified network topology for the circuit in The theorem is intuitively reasonable. The assump-

Fig. 1. The capacitor that appears explicitly in Fig. I tions guarantee that the cells cannot resonate with one

has been absorbed into Co. another at any purely sinusoidal frequency . = jw

since their phase angles can never differ by as much
as 1800, and they can never resonate with the resis-

Of course this model is oversimplified, since the cir- tors and capacitors since there is no w > 0 at which
cuit does oscillate. Transistor parasitics and layout par- both Re{Z,,(jw)} < 0 and Ir{Z,(jw)} > 0 for some
asitics cause the output admittance of the individual ac- n, 1 < n < N. The proof formalizes this argument us-
tive cells to deviate from the form given in eq. (1), and ing conservation of complex power, extends it to rule out
any very accurate model will necessarily be quite high natural frequencies in the right-half plane as well, and
order. The following theorem shows how far one can re- shows why instabilities resulting from a repeated natural
lax the positive-real condition and still guarantee that frequency at the origin cannot occur.
the entire network is robustly stable.

Proof of Theorem 1

Terminology Let so denote a natural frequency of the network and
The terms open right-half plane and closed right-half {Vk},{Ik} denote any complex network solution at s,.
plane refer to the set of all complex numbers a = a + jw By Tellegen's theorem [12], or conservation of complex
with a > 0 and a > 0, respectively, and the term closed power, we have
second quadrant refers to the set of complex numbers
with a < 0 and w > 0. A natural frequency of a lin- kV I = 0, (2)
ear network is a complex frequency so such that, when k

all independent sources are set to zero and all branch i.e., for s t any pole of Z, ,n = 1 N and s. # G,
impedances and admittances are evaluated at s, there
exists a nonzero solution for the complex branch voltages
{Vk} and currents (Ik} [11]. A lumped linear network is F j4(2 R+ - + E[12 (soCk)- + [I,,12 Z,,(s0) = 0 (3)
said to be stable if a) it has no natural frequencies in resistors capacitors cells
the closed right-half plane except perhaps at the origin,
and b) any natural frequency at the origin results only and for s. 6 any zero of Z,, - , ..n N,

in network solutions that are constant as functions of
time. (The latter condition rules out unstable transient Z Vk2. +T 2IVk.2j Ck+ " V12Y(*o) = 0
solutions that grow polynomially in time resulting from k
a repeated natural frequency at the origin.) resistors capacitors cells

where the superscript * denotes the complex conjugate

Theorem I operation. The proof is completed in the following three
parts, which together rule out the existence of any natu-

Consider the class of linear networks of arbitrary topol- ral frequencies in the closed right-half plane (except pos-
ogy, consisting of any number of positive 2-terminal resis- sibly for a single one at the origin).
tors and capacitors and of N lumped linear impedances
Z,(3), = 1,2,...,N, that are open- and short-circuit Part i)
stable in isolation, i.e., that have no poles or zeroes in
the closed right-half plane. Every such network is sta- This part shows that there are no natural frequencies at
ble if at each frequency w > 0 there exists a phase angle So = jw A 0. For each w > 0 all the cell impedance values

Closed Second For each cell having a Z,,(s) of relative degree less than
Quadrant zero, add a series resistance R; for all other cells and for

Im[Z(j.)j capacitors, add a parallel conductance G to each. Call/each resulting pair a "composite element", and choose
R = G = A > 0. For A sufficiently large all natural fre-
quencies must lie in the open left-half plane since every
branch element is strictly passive for A sufficiently large.
Since the natural frequencies are continuous functiojis of

R 's A [13] and Refit} > 0 for A = 0, there exists some A > 0
for which some natural frequency I lies on the imagi-
nary axis. But this is ruled out by the proof in part i)

SRe Z (j)J unless 3' = 0, and the argument in part ii) rules out

31 = 0, since any network solution at / = 0 consists of
- zero branch voltages except for capacitor branches, and

(jwC.T 's for A > 0 each capacitor has a positive conductance G
in parallel with it. Since the voltage across every G is
zero in such a network solution, all branch voltages (and
thus all branch currents) in that solution must be zero,
which is a contradiction because a natural frequency at

Figure 5: Illustration for the proof of Theorem 1. J, implies the existence of a nonzero solution.

III. Stability Result for Networks with
lie strictly below and to the right of a half-space bound- Nonlina Resistor Ndtwapacito

ary passing through the origin of the complex plane at

an angle O(w) + 900 with the real positive axis, as shown The previous results for linear networks can afford
in Fig. 5. The capacitor impedances {(jiCk) 1 } and some limited insight into the behavior of nonlinear net-

the resistor impedances {Rkl also lie below and to the works. If a linearized model is stable, then the equilib-

right of this line. Thus no positive linear combination rium point of the original nonlinear network is locally

of these impedances can vanish as required by (3). A stable. But the result in this section, in contrast, applies
similar argument holds for W < 0. to the full nonlinear circuit model and allows one to con-

clude that in certain circumstances the network cannot
Part ii) oscillate even if the initial state is arbitrarily far from the

This part shows that there cannot exist a repeated natu- equilibrium point.

ral frequency at the origin that leads to a time-dependent
solution. The assumptions that the cell impedances Terminology
have no jw-axis zeroes and that their Nyquist plots for We say that a function y = f(x) lies in the sector [a,b] if
w > 0 never intersect the closed 2nd quadrant imply ax 2 < f(x) < bx 2 . And we say that an impedance Z(s)
that Y,1(0) > 0, n = 1,...,N. Thus (4) requires that satisfies the Popov criterion if (1 + r3)Z(a) is positive
all the voltages across resistor branches and cell output real [7,8,and 9, p. 1741 for some r > 0. (Note that this
branches must vanish in any complex network solution at formulation of the Popov criterion differs slightly from
3. = 0. Thus only capacitor voltages can be nonzero and that given in standard references [8 and 9, p. 1861.)
the network solution will be unaltered if all non-capacitor
branches are replaced by short circuits. But every so- Therem 2
lution to a network comprised only of positive, linear
2-terminal capacitors is constant in time (and hence sta- Consider a network consisting of possibly nonlinear
ble). resistors and capacitors and cells with linear output

impedances Z,(,),n = 1,2,...,N. Suppose I
Part iii) i) the resistor curves are continuous functions ik =

This part uses a homotopy argument to show that there gk(vk) where 9k lies in the sector [0, G.,)],Gm. > 0, for
are no natural frequencies in the open right-half plane. all resistors,
Assume the contrary, i.e., that there exists such a net- ii) the capacitors are characterized by continuous func-
work with a natural frequency sI with Re{s 1} > 0. Alter tions ik = Ck(vk)V'k where 0 _< CM(vk) < C,, for all k
each element in the network (except resistors) as follows, and vk, and

I
I ii) the impedances Zn(s) all satisfy the Popov criterion

for some common value of r > 0. Then the network is T
stable in the sense that, for any initial condition, Z. i i(t)dt - Ek(qk(O) < ik(t)[Vk(t) + r'k(t)]dt.

i (t)0 (12)
[dt < 00. (5) And for the cells, the assumption that (1 + rs)Z,(s) is

all resistors positive real implies that
Outline of Proof a c

By Tellegen's theorem, for any set of initial conditions 1/oi,(t)[v,(t) + r7,(t)]dt > -E(0), (13)
and any time T > 0, where E,,(0) is the initial "energy" in the mathematically

IT constructed impedance (1 + r3)Z,,(s) at t = 0, a function] Z (vk(t) + rvk(t))ik(t)dt + of the initial conditions only. Substituting (9), (12) and
r0stors (13) into (6) yields

JIT (Vk(t) + rfk(t))ikt)dt +-
3 G T G J i(t)dt+ T i'(t)dt <

or T (vk(t) + rtk(t))ik(t)dt = 0. (6) resistors capaitors

cell impedarnces -O ¢(v(O))+ Ek (qk(O))+ E,(O), (14)

For resistors, multiplying the sector inequality vg(v) < resistors capitors cells

Gn V2 by I > 0 yields i2 = ig(v) <_ Gr1 iV, and hence where the right hand side is a function only of the initial

T T rconditions. Thus (5) holds.Gmaxo 1 (0 d k _ - o ik(t)Vk(t)dt =NtthtTi.2, as it is stated, applies only to
networks in which the voltage source waveform of each

cell's Thev~nin equivalent circuit is identically zero. In
T i(practice, these voltages are generally nonzero and change
i (7) with time. Yet a necessary condition for design is

where that the circuit be stable for constant Thev~nin voltages
(which would result from a constant light input). If this

yIV condition is met, then the effect of time variation can be
oki) = gk(v')dv' > 0 (8) thought of as an issue separate from stability and related

s tto the convergence rate of the network towards a "time-

is the resistor dependent equilibrium point." Thus, it is appropriate to
extend Thin. 2 to include the case of cells that have
arbitrary but constant Thevinin voltages. This can be

G-1 Ti2(t)dt-r(V(O)) < Tik(t)[vk(t)+rfk(t)]dt. done simply by requiring the resistor curves to satisfy the
GA _0 ksector condition i) of the theorem about all possible equi-

(9) lbrium points. Even if there is no known restriction on
For capacitors, integrating the inequality ik = the set of equilibrium points, the sector condition will be
C (vk)f _ Cra(vk)f yields satisfied at every equilibrium point if all the 9k's are non-

r oT" i T decreasing differentiable functions with bounded slope.IM1 r : (t)dt < r 0 Ck(vk)~df~k)dt IV. Concluding Remarks

T fThe design criteria presented here are simple and prac-
rik(t)[Vk(t) + rtk(t)dt - [Ek(qk(T) - Ek(qk(O)), (10) tical, though at present their validity is restricted to lin-

ear models of the cells. There are several areas of further
where work to be pursued, one of which is an analysis of the cell

that includes amplifier clipping effects. Others include
Ek(q) = v(q')dq' > 0 (11) the synthesis of a compensator for the cell, an extension

JO, of the nonlinear result to include impedance multipliers
is the capacitor energy. Using the inequality (11) in (10) other than the Popov operator, a bound on the network
yields for each capacitor settling time when the optical input is constant, and a

I

bound on the L 2 norm of the resistor and capacitor cur- 13. M. Marden, Geometry of Polynomials, American
rents in terms of the L 2 norm of the Thevinin equivalent Mathematical Society, Providence, RI, no. 3, 1985, pp.
cell voltage waveforms when the optical input is time- 4-5. I
varying.

ACKNOWLEDGEMENT 3
We sincerely thank Professor Carver Mead of Cal

Tech for encouraging this work, which was supported by
Defense Advanced Research Projects Agency (DARPA)
Contract No. N00014-87-K-0825 and National Science
Foundation (NSF) Contract No. MIP-8814612.

REFERENCES

1. F.S. Werblin, "The Control of Sensitivity in the
Retina," Scientific American, vol. 228, no. 1, Jan. 1983, m
pp. 70-79.

2. T. Kohonen, Self-Organization and Associative I
Memory, (vol. 8 in the Springer Series ini Information
Sciences), Springer Verlag, New York, 1984.

3. C.A. Mead and M.A. Mahowald, "A Silicon Model of 3
Early Visual Processing," Neural Networks, vol. 1, no.
1, Jan. 1988, pp. 91-97.

4. C.A. Mead, Analog VLSI and Neural Systems, I
Addison-Wesley, to appear in 1988.

5. J. Hutchinson, C. Koch, J. Luo and C. Mead,'"Com-
puting Motion Using Analog and Binary Resistive Net-
works," Computer, March 1988.

6. C.A. Mead, personal communication. 3
7. B.D.O. Anderson, and S. Vongpanitlerd, Network
Analysis and Synthesis - A Modern Systems The-
ory Appraoch, Prentice-Hall, Englewood Cliffs, NJ, I
1973.

8. M. Vidyasagar, Nonlinear Systems Analysis,
Prentice-Hall, Englewood Cliffs, NJ, 1978, pp. 211-217.

9. C. Desoer and M. Vidyasagar, Feedback Sys-
tems: Input-Output Properties, Academic Press,
New York, 1975.

10. J.J. Hopfield. "Neurons with Graded Response have
Collective Computational Properties Like Those of Two- 1
state Neurons," Proc. Nat'l. Acad. Sci., USA, vol. 81,
May 1984, pp. 3088-3092.

11. L.O. Chua, C.A. Desoer and E.S. Kuh, Linear and m
Nonlinear Circuits, McGraw-Hill, 1987, sect. 4.3.

12. P. Penfield, Jr., R. Spence, and S. Duinker, Tel-
Igen's Theorem and Electrical Networks, MIT

Press, Cambridge, MA, 1970.

=

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-480
October 1988

A MIXED FREQUENCY-TIME APPROACH FOR DISTORTION
ANALYSIS OF SWITCHING FILTER CIRCUITS

K. Kundert, J. White, A. Sangiovanni-Vincenteli

Abstract

Designers of switching filter circuits are often interested in steady-state and
intermodulation distortion due to both static effects, such as nonlinearities in the
capacitors, and dynamic effects, such as the charge injection during MOS transistor
switching or slow operational amplifier settling. Steady-state distortion can be computed
using the circuit simulation program SPICE, but this approach is computationally very
expensive. Specialized programs for switched capacitor filters can be used to rapidly
compute steady-state distortion, but do not consider dynamic effects. In this paper we
present a new mixed frequency-time approach for computing both steady-state and
intermodulation distortion. The method is both computationally efficient and includes
both static and dynamic distortion sources. The method has been implemented in a
C program, Nitswit, and results from several examples are presented.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-478
October 1988

EVALUATING THE PERFORMANCE OF SOFTWARE CACHE COHERENCE

Susan Owicki and Anant Agarwal

Abstract

In a shared-memory multiprocessor with private caches, cached copies of a data item must
be kept consistent. This is called cache coherence. Both hardware and software coherence
schemes have been proposed. Software techniques are attractive because they avoid
hardware complexity and can be used with any processor-memory interconnection. This
paper presents an analytical model of the performance of two software coherence schemes
and, for compa-'son, snoopy-cache hardware. The model is validated against address
traces from a bus-based multiprocessor. The behavior of the coherence schemes under
various workloads is compared, and their sensitivity to variations in workload parameters is
assessed. The analysis shows that the performance of software schemes is critically
determined by certain parameters of the workload: the proportion of data accesses, the
fraction of shared references, and the number of times a shared block is accessed before it
is purged from the cache. Snoopy caches are more resilient to variations in these
parameters. Thus when evaluating a software scheme as a design alternative, it is essential
to consider the characteristics of the expected workload. The performance of the two
software schemes with a multistage interconnection network is also evaluated, and it is
determined that both scale well.

Microsystems Massachusetts Cambridge Telephone

Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-491
December 1988

The J-Machine: System Support for Actors

William J. Dally

Abstract

The J-Machine in concert with its operating system kernel, JOSS, provides low-overhead
system services to support actor programming systems. The J-Machine is not specialized to
actor systems; instead, it provides primitive mechanisms for communication, synchron-
ization, and translation. Communication mechanisms are provided that permit a node to
send a message to any other node in the machine in < 2js. On message arrival, a task is
created and dispatched in < 1ms. A translation mechanism supports a global virtual
address space. These mechanisms efficiently support most proposed models of concurrent
computation. The hardware is an ensemble of up to 65,536 nodes each containing a 36-bit
processor, 4K 36-bit words of memory, and a router. The nodes are connected by a high-
speed 3-D mesh network. This design was chosen to make the most efficient use of
available chip and board area.

Microsysteis Massachusetts Cambridge Teleohone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

ft
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-492
December 1988

Universal Packet Routing Algorithms

Tom Leighton, Bruce Maggs, and Satish Rao

Abstract

In this paper we examine the packet routing problem in a network independent context.
Our goal is to devise a strategy for routing that works well for a wide variety of networks.
To achieve this goal, we partition the routing problem into two stages: a path selection
stage and a scheduling stage.

In the first stage we find paths for the packets with small maximum distance, d, and small
maximum congestion, c. Once the paths are fixed, both are lower bounds on the time
required to deliver the packets. In the second stage we find a schedule for the movement
of each packet along its path so that no two packets traverse the same edge at the same
time, and so that the total time and maximum queue size required to route all of the
packets to their destinations are minimized. For many graphs, the first stage is easy - we
simply use randomized intermediate destinations as suggested by Valiant. The second
stage is more challenging, however, and is the focus of this paper. Our results include:

1. a proof that there is a schedule of length O(c+d) requiring only constant size queues
for any set of paths with distance d and congestion c,

2. a Randomized on-line algorithm for routing any set of N "leveled" paths on a
bounded-degree network in O(c +d + log N) steps using constant size queues,

3. the first on-line algorithm for routing N-packets in the N-node shuffle-exchange graph
in O(log N) steps using constant size queues, and

4. the first constructions of area and volume-universal networks requiring only O(log N)
slow-down.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-493
November 1988

Criteria for Robust Stability in a Class of Lateral
Inhibition Networks Coupled Through Resistive Grids

John L Wyatt, Jr. and David L Standley

Abstract

In the analog VLSI implementation of neural systems, it is sometimes convenient to build
lateral inhibition networks by using a locally connected on-chip resistive grid to
interconnect active elements. A serious problem of unwanted spontaneous oscillation
often arises with these circuits and renders them unusable in practice. This paper reports
on criteria that guarantee these and certain other systems will be stable, even though the
values of designed elements in the resistive grid may be imprecise and the location and
values ot parasitic elements may be unknown. The method is based on a rigorous,
somewhat novel mathematical analysis using Tellegen's theorem from electrical circuits
and the idea of a Popov multiplier from control theory. The criteria are local in that no
overall analysis of the interconnected system is required for their use, empirical in that they
involve only measurable frequency response data on the individual cells, and robust in that
they are insensitive to network topology and to unmodelled parasitic resistances and
capacitances in the interconnect network. Certain results are robust in the additional sense
that specified nonlinear elements in the grid do not affect the stability criteria. The results
are designed to be applicable, with further development, to complex and incompletely
modelled living neural systems.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 88-494
November 1988

Stability Criterion for Lateral Inhibition and Related Networks
that is Robust in the Presence of Integrated Circuit Parasitics

John L Wyatt, Jr. and David L Standley

Abstract

In the analog VLSI implementation of neural systems, it is sometimes convenient to build
lateral inhibition networks by using a locally connected on-chip resistive grid. A serious
problem of unwanted spontaneous oscillation often arises with these circuits and renders
them unusable in practice. This paper reports a design approach that guarantees such a
system will be stable, even though the values of designed elements in the resistive grid may
be imprecise and the location and values of parasitic elements may be unknown. The
method is based on a mathematical analysis using Tellegen's theorem and the Popov
criterion. The criteria are local in the sense that no overall analysis of the interconnected
system is required for their use, empirical in the sense that they involve only measurable
frequency response data on the individual cells, and robust in the sense that they are not
affected by unmodelled parasitic resistances and capacitances in the interconnect network.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138
Room 39-321 of Technology 02139

Easily Testable PLA-based Finite State Machines

Srinivas Devadas
Department of Electrical Engincering and Computer Science

Massachusetts Institute of Technology, Cambridge

Hi-Keung Tony Ma and A. Richard Newton
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract the area and timing penalty associated with LSSD tech-
niques are not acceptable to designers.

In this paper, we outline a synthesis procedure, which Logic synthesis and minimization techniques can, in
beginning from a State Transition Graph description principle, ensure fully and easily testable combinational
of a sequential machine, produces an optimized easily and sequential circuit designs. In [1], a synthesis proce-
testable PLA-based logic implementation. dure which guaranteed fully testable irredundant combi-

Previous approaches to synthesizing easily testable national logic circuits was proposed. In [8], a procedure
sequential machines have concentrated on the stuck-at which produced a fully and easily testable logic-level se-
fault model. For PLAs, an extended fault model called quential machines from State Transition Graph descrip-
the crosspoint fault model is used. In this paper, we tions was proposed. The work in [8] showed that state
propose a procedure of constrained state assignment assignment has a profound effect on the testability of a
and logic optimization which guarantees testability sequential machine. Recently, an optimal synthesis pro-
for all combinationally irredundant crosspoint faults in a cedure, that guarantees full non-scan testability under
PLA-based finite state machine. No direct access to the the stuck-at fault model, with no associated area or per-
ifip-flops is reqaired. The test sequences to detect these fcrmance penalty has been proposed [6].
faults can be obtained using combinational test genera- Programmable Logic Arrays (PLAs) are used exten-
tion techniques alone. This procedure thus represents an sively in the design of complex VLSI systems. Sequen-
alternative to a Scan Design methodology. We present tial functions can be reali z'd very efficiently by adding
results which illustrate the efficacy of this procedure - feedback registers to t, I'LA. Numerous programs for
the area/performance penalties in return for easy testa- the optimal synthesis of I[LA-based finite state machines
bility are small, have been developed (e.g. [16], [7]). Test generation and

design-for-testability techniques for PLA structures have
been active areas of research.

1 Introduction Due to a PLA's dense layout, PLA faults other than
conventional stuck-at faults can occur easily and must

Test generation for sequential circuits has long been rec- be modeled. An extended model, the crosspoint fault
ognized as a difficult task [4]. Several approaches [3) [18] model, has been proposed in [5] and [12]. The crosspoint-
[15] [14] [17] [19] have been taken in the past to solve oriented test set covers many of the frequently occurring
the problem of test generation for sequential circuits. physical faults, including shorts between lines. Several
They are either extensions to the classical D-Algorithm PLA test generation techniques aimed at the crosspoint
or based on random techniques [18] [17]. When the num- fault model have been proposed (e.g. [13], [9]). In partic-
ber of states of the circuit is large and the tests demand ular, an exact and efficient technique which guarantees
long input sequences, they can be quite ineffective for maximum fault coverage and identification o. all redun-
test generation. dant faults was proposed in [20].

For sequential circuits, design for testability has been Design-for-testability techniques (e.g. [11]) for PLAs
a synonym for the use of full Scan Design techniques, require contr.-)lMhility of all inputs and observability of
such as the LSSD approach [10] pioneered by IBM. This all outputs of th. II.A. Synthesis approaches to produc-
method converts the difficult problem of testing sequen- ing easily testable seqw-ntin] machines, without requiring
tial circuits, into a much easier one, that of testing a direct access to the inpt i /outputs or the circuit's mem-
combinational circuit. However, there are cases where ory elements, have not been aimed at the crosspoint fault

Temporal, Processor, and Spatial Locality
in

Multiprocessor Memory References*

Anant Agarwal Anoop Gupta
Laboratory for Computer Science Computer Systems Laboratory

Massachusetts Institute of Technology Stanford University
Cambridge, MA 02139 Stanford, CA 94305

Abstract

The performance of cache-coherent mulLiprocessors is strongly influenced by locality in
the memory reference behavior of parallel applications. While the notions of temporal and
spatial locality in uniprocessor memory references are well understood, the corresponding
notions of locality in multiprocessors and their impact on multiprocessor cache behavior are
not clear. A locality model suitable for multiprocessor cache evaluation is derived by viewing
memory references as streams of processor identifiers directed at specific cache/memory
blocks. This viewpoint differs from the traditional uniprocessor approach that uses streams
of addresses to different blocks emanating from specific processors. Our view is based on the
intuition that cache coherence traffic in multiprocessors is largely determined by the number
of processors accessing a location, the frequency wiLh which they access the location, and the
sequence in which their accesses occur. The specific locations accessed by each processor,
the time order of access to different locations, and the size of the working set play a smaller
role in determining the cache coherence traffic, although they still influence intrinsic cache
performance. Looking at traces from the viewpoint of a memory block leads to a new notion
of reference locality for multiprocessors, called processor locality. In this paper, we study the
temporal, spatial, and processor locality in the memory reference patterns of three parallel
applications. Based on the observed locality, we then reflect on the expected cache behavior
of the three applications.

1 Introduction

Multiprocessors often use caches to reduce their network bandwidth requirements. Caches retain
recently accessed data so that repeat references to this data in the near future and will not
require network traversals. Repeated access to the same data in a given interval of time is the
property of temporal locality of memory references and has been well studied in single processor
systems (1, 2]. Spatial locality of memory references is another related property of memory
references that places a high probability of access to data close to previously accessed data.
Again, this property of single processor programs has been widely observed. The viability of
cache-coherent multiprocessors is strongly predicated on whether the mu l tiprocessor caches can
exploit locality of memory referencing.

*Preliminary results of this study were reported in Sigmetrics 1988.

1

Approaches to Multi-Level
Sequential Logic Synthesis

Srinivas Devadas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Abstract represented by State Transition Graphs. algorithms
that encode the internal states of the machines, taking

In this paper, we present approaches to multi-level se- into account their interactsons. do not exist to date. If
quential logic synthesis - algorithms and techniques for indeed, the machines are encoded separately, disregard-
the area and performance optimization of interconnected ing their interconnectivity, a sub-optimal state assign-

finite state machine descriptions. ment can result (and generally does).
Interacting finite state machines are common in in- Traditionally, the decomposition of an initial circuit

dustrial chip designs. While optimization techniques specification into smaller, interacting sequential circuits
for single finite state machines are relatively well devel- has been performed by the logic designer. Once a
oped, the problem of optimization across latch bound- decomposition has been performed, it is almost never
aries has received much less attention. Techniques to changed and logic synthesis tools operate on separate
optimize pipelined combinational logic so as to im- logic blocks independently. Unfortunately, there are no
prove area/throughput have been proposed. However, guarantees regardi the quality of the initial decom-
logic cannot be straightforwardly rmigrated across latch position, in terms of minimality of communication be-
boundaries when the basic blocks are sequential rather tween the machines and/or complexities of the individ-thn combinational circuits.
Recpresent new techniques for the exploitation of se- ual machines. There exist automatic techniques that

quential don't cares in arbitrary, interconnected sequen- can decompose lumped sequential circuitc into smaller,
tial machine structures. Exploiting these don't care se- interacting ones (e.g. [5]). These techni s are limited
quences can result in significant improvements in area in the topology of interconnections that c,. n be achieved
and performance. We address the problem of migrating and severely limited in their capabilities of handling cir-
logic across state machine boundaries so as to make par- cuits of large size. Flattening the initial. tistributed
ticular machines less complex at the possible expense of specification can result in a very large lumped circuit.
making others more complex. This can be useful from Efficient and flexible algorithms for re-partitioning in-
both an area and performance point of view. We present teracting sequential circuits for area and performance
new optimization algorithms that incrementally modify optimization have not been proposed in the past. Work
qtate rrchine s ructure %cross latch boundaries. We has been done in re-partitioning pipelined combina-
iscussn feuseotmore g a state mac hine ecomposi- tional logic stages (e.g. [6]). There is no restriction

tion and factorization algorithms for area optimization. on migrating logic across latch boundaries when the ba-
Finally, we present experimental results using these al- sic blocks are combinational, provided the latches are
gorithms on sequential circuits. not observable - the functionality of the circuit is un-

1 Introduction changed by moving say, one gate from before to after
Interacting finite state machines (FSMs) are common in a latch. However, when sequential circuits are inter-citeing dconnected, as shown in Figure 1, one cannot arbitrarilychips bein designed today. The advantages of a hier- move logic across pipeline latch boundaries (We refer to
archical, distributed-style specification and realization
are many. While the terminal behavior of any set of in- flip-flops that store state as state latches and flip-flops
terconnected sequential circuits can be modeled and/or that store intermediate values as pipeline latches). The

realized by a lumped circuit, the former can be consider- functionality and terminal behavior of the circuit will
be changed, even though the latches are not observable.ab more compact, as well as being easy to understand One wishes to be able to migrate logic across pipelineTheisvates o fitch boundaries for several reasons. The duration ofThe disadvantages of this form of specification from the system clock nas to be greater than the longest

a CAD point of view are that sequential logic synthesis path between any two pipeline stages. If a machine,
algorithms are generally reetricted to operate on lumped A, is significantly more complex than another machine
circuits. State assignment algorithms (e.g. [1], (8], (31), B, the critical path/system clock may be unnecessarily
for instance, almost exclusively operate on single finite long. The clock cycle could be shortened by making A
state machines. Given a set of interacting machines less complex at the possible expense of making B more

complex. In the best case, the complexities of both A
and B would de rease.Another very important issue is the specification and
exploitation of ,i',, cares in interconnected FSM de-
scriptions. For, ,.:mple, in Figure 1, certain binary
combinations may never appear at the set of latches
LI. This will correspond to an incompletely specified
machine B. These don't cares can be exploited us-
ing standard state minimization strategies [9]. A more
complicated form of don't care, referred to here as a se-

I
i

I Area-Universal Networks

Ronald I. Greenberg
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
rig@theory.lcs.mit.edu

5 (extended abstract)
January 24, 1989U

An area-universal network is one which can efficiently simulate any other network of comparable area.
This paper extends previous results on area-universal networks in several ways. First, it considers the
size (amount of attached memory) of processors comprising the networks being compared. It shows that
an appropriate universal network of area E(A) built from processors of size Ig A requires only O(1g 2 A)

slowdown in bit-times to simulate any network of area A, without any restriction on processoL mi.t or
number of processors in the competing network. Furthermore, the universal network can be designed
so that any message traversing a path of length d in the competing network need follow a path of only
O(d + Ig A) length in the universal network. Thus. the results are almost entirely insensitive to removal
of the unit wire delay assumption used in previous work. This paper also derives upper bounds on the
slowdown required by a universal network to simulate a network of larger area and shows that all of the
simulation results are valid even without the usual assumption that computation and communication of
the competing network proceed in separate phases.

1 Introduction

This paper provides several advances in the search for the best way to make use of a fixed amount of
physical space when building a general-purpose parallel computer. The focus on space consumed by both
processors and interconnect represents an attempt to better rmc-ure real-world costs than to merely count
the number of processors. The results of this paper are stated in terms of area required under standard
two-dimensional VLSI modeling assumptions. The extension to three-dimensions is fairly straightforward
using the ideas in [2].

The notion of a routing network which is universal for a given amount of physical space was introduced
by Leiserson in [5]. That paper introduces a class of routing networks referred to as fat-trees and shows
that an appropriate n-processor network from this class can simulate (off-line other routing network
connecting the same processors and occupying the same volume, with only (1g n actor degradation in
;,eii thne required. A slight restriction on the number of processors in the comp g network was required,
because Leiserson's fat-trees used area slightly more than linear in the number of processors.

The approach to proving fat-trees universal is twofold. First it is shown that any competing network

can be mapped to a fat-tree without placing too great a communications load on any of the communication

This research was supported in part by the Defense Advanced Research Projects Agency under Contract N00014-87-
K-0825. by the Office of Naval Research under Contract N00014-86-K-0593, and by & Fannie and John Hertz Foundation
Fellowship.

A Digital Model for Level-Clocked Circuitry"

by
Alexander Toichi Ishii

Submitted to the Department of
Electrical Engineering and Computer Science

on August 8, 1988
in Partial Fulfillment of the

Requirements of the Degree of

Master of Science
in

Electrical Engineering and Computer Science

Abstract

This thesis presents the formal background for a mathematical model for level-
clocked circuitry, in which latches are controlled by the levels (high or low) of clock
signals rather than transitions (edges) of the clocks. Such level-clocked circuits are
frequently used in MOS VLSI design. Our model maps continuous data-domains,
such as voltage, into discrete, or digital, data domains, while retaining a continuous
notion of time. A level-clocked circuit is represented as a graph G = (V, E), where V
consists of digital components-latches and functional elements-and E represents
inter-component connections.

The majority of this thesis concentrates on developing lemmas and theorems that
can serve as a set of "axioms" when analyzing algorithms based on the model. Key
axioms include the fact that circuits in our model generate only well defined digital
signals, and the fact that components in our model support and accurately handle the
"undefined" values that electrical signals must take on when they make a transition
between valid logic levels. In order to facilitate proofs for circuit properties, the class
of computational predicates is defined. A circuit property can be proved by simply
casting the property as a computational predicate.

Thesis Supervisor: Professor Charles E. Leiserson
Title: Associate Professor

0This research represents joint work with Charles E. Leiserson, and is supported in part by the Defense
Advanced Research Projects Agency under Contract N00014-87-K-825. Charles Leiserson is supported
in part by an NSF Presidential Young Investigator Award with matching funds provided by AT&T Bell
Laboratories and Xerox Corporation.

2

T

A RECONFIGURABLE ARITHMETIC PROCESSOR

by

James Alexander Stuart Fiske

Submitted to the
Department of Electrical Engineering and Computer Science

on December 16 in partial fulfillment of
the requirements for the Degree of Master of Science in

Electrical Engineering and Computer Science

Abstract

Achieving high rates of floating-point computation is one of the primary goals of many computer
designs. Many high speed floating-point datapaths have been designed in order to address this
problem. However, conventional designs often neglect the real problem in achieving high perfor-
mance floating-point: providing the necessary I/O bandwidth to keep the high speed datapaths
busy.

The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a message-
passing, MIMD concurrent computer. Its datapath is designed to sustain high rates of floating-point
operations, while requiring only a fraction of the I/0 bandwidth required by a conventional floating-
point datapath. The RAP incorporates on one chip eight 4-bit serial, 64 bit floating-point arithmetic
units connected by a switching network. By sequencing the switch through different patterns, thp
RAP chip calculates complete arithmetic formulas. By chaining together its arithmetic units the
RAP eliminates the I/O bandwidth associated with storing and retrieving intermediate results, and
reduces the amount of off chip data transfer.

This Thesis describes and evaluates the RAP architecture. It presents two important aspects of the
cbp design: the control logic design, and the schematic level design of the RAP datapath. The RAP
datapath design includes the design of two 4-bit serial floating-point units: an adder/subtractor
unit and a multiplier unit. In order to use the RAP datapath, a compiler is developed that takes
as input a list of mathematical expressions, and outputs a series of switch configurations to be used
by the RAP to do the calculation.

On 23 benchmark problems, the RAP reduced both the on chip and off chip bandwidth requirements
by an average of 64-, when compared the bandwidth required by a conventional arithmetic chip
that does not exploit locality. Average floating-point performance is 3.40 Millions of Floating-point
operations per second (MFlops).

Thesis Supervisor: William J. Dally
Title: Assistant Professor of Electrical Engineering and Computer Science

Keywords: Floating-Point, B lwidth, Serial Arithmetic, Locality, J-Machine.

